n_support.S revision 1.9 1 1.9 martin /* $NetBSD: n_support.S,v 1.9 2014/03/15 14:12:56 martin Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.6 agc * 3. Neither the name of the University nor the names of its contributors
15 1.1 ragge * may be used to endorse or promote products derived from this software
16 1.1 ragge * without specific prior written permission.
17 1.1 ragge *
18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 ragge * SUCH DAMAGE.
29 1.1 ragge *
30 1.1 ragge * @(#)support.s 8.1 (Berkeley) 6/4/93
31 1.1 ragge */
32 1.3 matt #include <machine/asm.h>
33 1.3 matt
34 1.7 martin WEAK_ALIAS(logbl,logb)
35 1.8 martin WEAK_ALIAS(copysignl, copysign)
36 1.7 martin
37 1.3 matt .text
38 1.1 ragge _sccsid:
39 1.3 matt .asciz "@(#)support.s\t1.3 (Berkeley) 8/21/85; 8.1 (ucb.elefunt) 6/4/93"
40 1.1 ragge
41 1.1 ragge /*
42 1.1 ragge * copysign(x,y),
43 1.1 ragge * logb(x),
44 1.1 ragge * scalb(x,N),
45 1.1 ragge * finite(x),
46 1.1 ragge * drem(x,y),
47 1.1 ragge * Coded in vax assembly language by K.C. Ng, 3/14/85.
48 1.1 ragge * Revised by K.C. Ng on 4/9/85.
49 1.1 ragge */
50 1.1 ragge
51 1.1 ragge /*
52 1.3 matt * double copysign(double x,double y)
53 1.1 ragge */
54 1.3 matt
55 1.3 matt ENTRY(copysign, 0)
56 1.4 matt movq 4(%ap),%r0 # load x into %r0
57 1.4 matt bicw3 $0x807f,%r0,%r2 # mask off the exponent of x
58 1.1 ragge beql Lz # if zero or reserved op then return x
59 1.4 matt bicw3 $0x7fff,12(%ap),%r2 # copy the sign bit of y into %r2
60 1.4 matt bicw2 $0x8000,%r0 # replace x by |x|
61 1.4 matt bisw2 %r2,%r0 # copy the sign bit of y to x
62 1.1 ragge Lz: ret
63 1.1 ragge
64 1.8 martin ENTRY(copysignf, 0)
65 1.9 martin movl 4(%ap),%r0 # load x into %r0
66 1.8 martin bicw3 $0x807f,%r0,%r2 # mask off the exponent of x
67 1.8 martin beql 1f # if zero or reserved op then return x
68 1.8 martin bicw3 $0x7fff,8(%ap),%r2 # copy the sign bit of y into %r2
69 1.8 martin bicw2 $0x8000,%r0 # replace x by |x|
70 1.8 martin bisw2 %r2,%r0 # copy the sign bit of y to x
71 1.8 martin 1: ret
72 1.8 martin
73 1.1 ragge /*
74 1.7 martin * float logbf(float x);
75 1.7 martin */
76 1.7 martin ENTRY(logbf, 0)
77 1.7 martin cvtfd 4(%ap),-(%sp)
78 1.7 martin calls $2,_C_LABEL(logb)
79 1.7 martin cvtdf %r0,%r0
80 1.7 martin ret
81 1.7 martin
82 1.7 martin /*
83 1.3 matt * double logb(double x);
84 1.1 ragge */
85 1.3 matt ENTRY(logb, 0)
86 1.4 matt bicl3 $0xffff807f,4(%ap),%r0 # mask off the exponent of x
87 1.1 ragge beql Ln
88 1.4 matt ashl $-7,%r0,%r0 # get the bias exponent
89 1.4 matt subl2 $129,%r0 # get the unbias exponent
90 1.4 matt cvtld %r0,%r0 # return the answer in double
91 1.1 ragge ret
92 1.4 matt Ln: movq 4(%ap),%r0 # %r0:1 = x (zero or reserved op)
93 1.1 ragge bneq 1f # simply return if reserved op
94 1.4 matt movq $0x0000fe00ffffcfff,%r0 # -2147483647.0
95 1.1 ragge 1: ret
96 1.1 ragge
97 1.1 ragge /*
98 1.3 matt * long finite(double x);
99 1.1 ragge */
100 1.5 matt #ifndef __GFLOAT__
101 1.5 matt .globl finitef
102 1.5 matt finitef = finite
103 1.5 matt #endif
104 1.3 matt ENTRY(finite, 0)
105 1.5 matt bicw3 $0x7f,4(%ap),%r0 # mask off the mantissa
106 1.4 matt cmpw %r0,$0x8000 # to see if x is the reserved op
107 1.1 ragge beql 1f # if so, return FALSE (0)
108 1.4 matt movl $1,%r0 # else return TRUE (1)
109 1.1 ragge ret
110 1.4 matt 1: clrl %r0
111 1.1 ragge ret
112 1.1 ragge
113 1.3 matt /* int isnan(double x);
114 1.3 matt */
115 1.3 matt #if 0
116 1.3 matt ENTRY(isnan, 0)
117 1.4 matt clrl %r0
118 1.3 matt ret
119 1.3 matt #endif
120 1.3 matt
121 1.3 matt /* int isnanf(float x);
122 1.3 matt */
123 1.3 matt ENTRY(isnanf, 0)
124 1.4 matt clrl %r0
125 1.3 matt ret
126 1.3 matt
127 1.1 ragge /*
128 1.1 ragge * double scalb(x,N)
129 1.1 ragge * double x; double N;
130 1.1 ragge */
131 1.1 ragge .set ERANGE,34
132 1.3 matt
133 1.3 matt ENTRY(scalb, 0)
134 1.4 matt movq 4(%ap),%r0
135 1.4 matt bicl3 $0xffff807f,%r0,%r3
136 1.1 ragge beql ret1 # 0 or reserved operand
137 1.4 matt movq 12(%ap),%r4
138 1.4 matt cvtdl %r4, %r2
139 1.4 matt cmpl %r2,$0x12c
140 1.1 ragge bgeq ovfl
141 1.4 matt cmpl %r2,$-0x12c
142 1.1 ragge bleq unfl
143 1.4 matt ashl $7,%r2,%r2
144 1.4 matt addl2 %r2,%r3
145 1.1 ragge bleq unfl
146 1.4 matt cmpl %r3,$0x8000
147 1.1 ragge bgeq ovfl
148 1.4 matt addl2 %r2,%r0
149 1.1 ragge ret
150 1.1 ragge ovfl: pushl $ERANGE
151 1.3 matt calls $1,_C_LABEL(infnan) # if it returns
152 1.4 matt bicw3 $0x7fff,4(%ap),%r2 # get the sign of input arg
153 1.4 matt bisw2 %r2,%r0 # re-attach the sign to %r0/1
154 1.1 ragge ret
155 1.4 matt unfl: movq $0,%r0
156 1.1 ragge ret1: ret
157 1.1 ragge
158 1.1 ragge /*
159 1.1 ragge * DREM(X,Y)
160 1.1 ragge * RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE)
161 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits)
162 1.1 ragge * CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/8/85.
163 1.1 ragge */
164 1.1 ragge .set EDOM,33
165 1.3 matt
166 1.3 matt ENTRY(drem, 0x0fc0)
167 1.4 matt subl2 $12,%sp
168 1.4 matt movq 4(%ap),%r0 #%r0=x
169 1.4 matt movq 12(%ap),%r2 #%r2=y
170 1.1 ragge jeql Rop #if y=0 then generate reserved op fault
171 1.4 matt bicw3 $0x007f,%r0,%r4 #check if x is Rop
172 1.4 matt cmpw %r4,$0x8000
173 1.1 ragge jeql Ret #if x is Rop then return Rop
174 1.4 matt bicl3 $0x007f,%r2,%r4 #check if y is Rop
175 1.4 matt cmpw %r4,$0x8000
176 1.1 ragge jeql Ret #if y is Rop then return Rop
177 1.4 matt bicw2 $0x8000,%r2 #y := |y|
178 1.4 matt movw $0,-4(%fp) #-4(%fp) = nx := 0
179 1.4 matt cmpw %r2,$0x1c80 #yexp ? 57
180 1.1 ragge bgtr C1 #if yexp > 57 goto C1
181 1.4 matt addw2 $0x1c80,%r2 #scale up y by 2**57
182 1.4 matt movw $0x1c80,-4(%fp) #nx := 57 (exponent field)
183 1.1 ragge C1:
184 1.4 matt movw -4(%fp),-8(%fp) #-8(%fp) = nf := nx
185 1.4 matt bicw3 $0x7fff,%r0,-12(%fp) #-12(%fp) = sign of x
186 1.4 matt bicw2 $0x8000,%r0 #x := |x|
187 1.4 matt movq %r2,%r10 #y1 := y
188 1.4 matt bicl2 $0xffff07ff,%r11 #clear the last 27 bits of y1
189 1.1 ragge loop:
190 1.4 matt cmpd %r0,%r2 #x ? y
191 1.1 ragge bleq E1 #if x <= y goto E1
192 1.1 ragge /* begin argument reduction */
193 1.4 matt movq %r2,%r4 #t =y
194 1.4 matt movq %r10,%r6 #t1=y1
195 1.4 matt bicw3 $0x807f,%r0,%r8 #xexp= exponent of x
196 1.4 matt bicw3 $0x807f,%r2,%r9 #yexp= exponent fo y
197 1.4 matt subw2 %r9,%r8 #xexp-yexp
198 1.4 matt subw2 $0x0c80,%r8 #k=xexp-yexp-25(exponent bit field)
199 1.1 ragge blss C2 #if k<0 goto C2
200 1.4 matt addw2 %r8,%r4 #t +=k
201 1.4 matt addw2 %r8,%r6 #t1+=k, scale up t and t1
202 1.1 ragge C2:
203 1.4 matt divd3 %r4,%r0,%r8 #x/t
204 1.4 matt cvtdl %r8,%r8 #n=[x/t] truncated
205 1.4 matt cvtld %r8,%r8 #float(n)
206 1.4 matt subd2 %r6,%r4 #t:=t-t1
207 1.4 matt muld2 %r8,%r4 #n*(t-t1)
208 1.4 matt muld2 %r8,%r6 #n*t1
209 1.4 matt subd2 %r6,%r0 #x-n*t1
210 1.4 matt subd2 %r4,%r0 #(x-n*t1)-n*(t-t1)
211 1.3 matt jbr loop
212 1.1 ragge E1:
213 1.4 matt movw -4(%fp),%r6 #%r6=nx
214 1.1 ragge beql C3 #if nx=0 goto C3
215 1.4 matt addw2 %r6,%r0 #x:=x*2**57 scale up x by nx
216 1.4 matt movw $0,-4(%fp) #clear nx
217 1.3 matt jbr loop
218 1.1 ragge C3:
219 1.4 matt movq %r2,%r4 #%r4 = y
220 1.4 matt subw2 $0x80,%r4 #%r4 = y/2
221 1.4 matt cmpd %r0,%r4 #x:y/2
222 1.1 ragge blss E2 #if x < y/2 goto E2
223 1.1 ragge bgtr C4 #if x > y/2 goto C4
224 1.4 matt cvtdl %r8,%r8 #ifix(float(n))
225 1.4 matt blbc %r8,E2 #if the last bit is zero, goto E2
226 1.1 ragge C4:
227 1.4 matt subd2 %r2,%r0 #x-y
228 1.1 ragge E2:
229 1.4 matt xorw2 -12(%fp),%r0 #x^sign (exclusive or)
230 1.4 matt movw -8(%fp),%r6 #%r6=nf
231 1.4 matt bicw3 $0x807f,%r0,%r8 #%r8=exponent of x
232 1.4 matt bicw2 $0x7f80,%r0 #clear the exponent of x
233 1.4 matt subw2 %r6,%r8 #%r8=xexp-nf
234 1.1 ragge bgtr C5 #if xexp-nf is positive goto C5
235 1.4 matt movw $0,%r8 #clear %r8
236 1.4 matt movq $0,%r0 #x underflow to zero
237 1.1 ragge C5:
238 1.4 matt bisw2 %r8,%r0 /* put %r8 into x's exponent field */
239 1.1 ragge ret
240 1.1 ragge Rop: #Reserved operand
241 1.1 ragge pushl $EDOM
242 1.3 matt calls $1,_C_LABEL(infnan) #generate reserved op fault
243 1.1 ragge ret
244 1.1 ragge Ret:
245 1.4 matt movq $0x8000,%r0 #propagate reserved op
246 1.1 ragge ret
247