Home | History | Annotate | Line # | Download | only in complex
catrigf.c revision 1.2
      1  1.2    rillig /*	$NetBSD: catrigf.c,v 1.2 2022/04/19 20:32:16 rillig Exp $	*/
      2  1.1  christos /*-
      3  1.1  christos  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen (at) FreeBSD.ORG>
      4  1.1  christos  * All rights reserved.
      5  1.1  christos  *
      6  1.1  christos  * Redistribution and use in source and binary forms, with or without
      7  1.1  christos  * modification, are permitted provided that the following conditions
      8  1.1  christos  * are met:
      9  1.1  christos  * 1. Redistributions of source code must retain the above copyright
     10  1.1  christos  *    notice, this list of conditions and the following disclaimer.
     11  1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     13  1.1  christos  *    documentation and/or other materials provided with the distribution.
     14  1.1  christos  *
     15  1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     16  1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17  1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18  1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     21  1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  1.1  christos  * SUCH DAMAGE.
     26  1.1  christos  */
     27  1.1  christos 
     28  1.1  christos /*
     29  1.1  christos  * The algorithm is very close to that in "Implementing the complex arcsine
     30  1.1  christos  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
     31  1.1  christos  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
     32  1.1  christos  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
     33  1.1  christos  * http://dl.acm.org/citation.cfm?id=275324.
     34  1.1  christos  *
     35  1.1  christos  * See catrig.c for complete comments.
     36  1.1  christos  *
     37  1.1  christos  * XXX comments were removed automatically, and even short ones on the right
     38  1.1  christos  * of statements were removed (all of them), contrary to normal style.  Only
     39  1.1  christos  * a few comments on the right of declarations remain.
     40  1.1  christos  */
     41  1.1  christos 
     42  1.1  christos #include <sys/cdefs.h>
     43  1.1  christos #if 0
     44  1.1  christos __FBSDID("$FreeBSD: head/lib/msun/src/catrigf.c 275819 2014-12-16 09:21:56Z ed $");
     45  1.1  christos #endif
     46  1.2    rillig __RCSID("$NetBSD: catrigf.c,v 1.2 2022/04/19 20:32:16 rillig Exp $");
     47  1.1  christos 
     48  1.1  christos #include "namespace.h"
     49  1.1  christos #ifdef __weak_alias
     50  1.1  christos __weak_alias(casinf, _casinf)
     51  1.1  christos #endif
     52  1.1  christos #ifdef __weak_alias
     53  1.1  christos __weak_alias(catanf, _catanf)
     54  1.1  christos #endif
     55  1.1  christos 
     56  1.1  christos 
     57  1.1  christos #include <complex.h>
     58  1.1  christos #include <float.h>
     59  1.1  christos 
     60  1.1  christos #include "math.h"
     61  1.1  christos #include "math_private.h"
     62  1.1  christos 
     63  1.1  christos #undef isinf
     64  1.1  christos #define isinf(x)	(fabsf(x) == INFINITY)
     65  1.1  christos #undef isnan
     66  1.1  christos #define isnan(x)	((x) != (x))
     67  1.2    rillig #define	raise_inexact()	do { volatile float junk __unused = /*LINTED*/1 + tiny; } while (0)
     68  1.1  christos #undef signbit
     69  1.1  christos #define signbit(x)	(__builtin_signbitf(x))
     70  1.1  christos 
     71  1.1  christos static const float
     72  1.1  christos A_crossover =		10,
     73  1.1  christos B_crossover =		0.6417,
     74  1.1  christos FOUR_SQRT_MIN =		0x1p-61,
     75  1.1  christos QUARTER_SQRT_MAX =	0x1p61,
     76  1.1  christos m_e =			2.7182818285e0,		/*  0xadf854.0p-22 */
     77  1.1  christos m_ln2 =			6.9314718056e-1,	/*  0xb17218.0p-24 */
     78  1.1  christos pio2_hi =		1.5707962513e0,		/*  0xc90fda.0p-23 */
     79  1.1  christos RECIP_EPSILON =		1 / FLT_EPSILON,
     80  1.1  christos SQRT_3_EPSILON =	5.9801995673e-4,	/*  0x9cc471.0p-34 */
     81  1.1  christos SQRT_6_EPSILON =	8.4572793338e-4,	/*  0xddb3d7.0p-34 */
     82  1.1  christos SQRT_MIN =		0x1p-63;
     83  1.1  christos 
     84  1.1  christos static const volatile float
     85  1.1  christos pio2_lo =		7.5497899549e-8,	/*  0xa22169.0p-47 */
     86  1.1  christos tiny =			0x1p-100;
     87  1.1  christos 
     88  1.1  christos static float complex clog_for_large_values(float complex z);
     89  1.1  christos 
     90  1.1  christos static inline float
     91  1.1  christos f(float a, float b, float hypot_a_b)
     92  1.1  christos {
     93  1.1  christos 	if (b < 0)
     94  1.1  christos 		return ((hypot_a_b - b) / 2);
     95  1.1  christos 	if (b == 0)
     96  1.1  christos 		return (a / 2);
     97  1.1  christos 	return (a * a / (hypot_a_b + b) / 2);
     98  1.1  christos }
     99  1.1  christos 
    100  1.1  christos static inline void
    101  1.1  christos do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
    102  1.1  christos     float *sqrt_A2my2, float *new_y)
    103  1.1  christos {
    104  1.1  christos 	float R, S, A;
    105  1.1  christos 	float Am1, Amy;
    106  1.1  christos 
    107  1.1  christos 	R = hypotf(x, y + 1);
    108  1.1  christos 	S = hypotf(x, y - 1);
    109  1.1  christos 
    110  1.1  christos 	A = (R + S) / 2;
    111  1.1  christos 	if (A < 1)
    112  1.1  christos 		A = 1;
    113  1.1  christos 
    114  1.1  christos 	if (A < A_crossover) {
    115  1.1  christos 		if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
    116  1.1  christos 			*rx = sqrtf(x);
    117  1.1  christos 		} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
    118  1.1  christos 			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
    119  1.1  christos 			*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
    120  1.1  christos 		} else if (y < 1) {
    121  1.1  christos 			*rx = x / sqrtf((1 - y) * (1 + y));
    122  1.1  christos 		} else {
    123  1.1  christos 			*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
    124  1.1  christos 		}
    125  1.1  christos 	} else {
    126  1.1  christos 		*rx = logf(A + sqrtf(A * A - 1));
    127  1.1  christos 	}
    128  1.1  christos 
    129  1.1  christos 	*new_y = y;
    130  1.1  christos 
    131  1.1  christos 	if (y < FOUR_SQRT_MIN) {
    132  1.1  christos 		*B_is_usable = 0;
    133  1.1  christos 		*sqrt_A2my2 = A * (2 / FLT_EPSILON);
    134  1.1  christos 		*new_y = y * (2 / FLT_EPSILON);
    135  1.1  christos 		return;
    136  1.1  christos 	}
    137  1.1  christos 
    138  1.1  christos 	*B = y / A;
    139  1.1  christos 	*B_is_usable = 1;
    140  1.1  christos 
    141  1.1  christos 	if (*B > B_crossover) {
    142  1.1  christos 		*B_is_usable = 0;
    143  1.1  christos 		if (y == 1 && x < FLT_EPSILON / 128) {
    144  1.1  christos 			*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
    145  1.1  christos 		} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
    146  1.1  christos 			Amy = f(x, y + 1, R) + f(x, y - 1, S);
    147  1.1  christos 			*sqrt_A2my2 = sqrtf(Amy * (A + y));
    148  1.1  christos 		} else if (y > 1) {
    149  1.1  christos 			*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
    150  1.1  christos 			    sqrtf((y + 1) * (y - 1));
    151  1.1  christos 			*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
    152  1.1  christos 		} else {
    153  1.1  christos 			*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
    154  1.1  christos 		}
    155  1.1  christos 	}
    156  1.1  christos }
    157  1.1  christos 
    158  1.1  christos float complex
    159  1.1  christos casinhf(float complex z)
    160  1.1  christos {
    161  1.1  christos 	float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
    162  1.1  christos 	int B_is_usable;
    163  1.1  christos 	float complex w;
    164  1.1  christos 
    165  1.1  christos 	x = crealf(z);
    166  1.1  christos 	y = cimagf(z);
    167  1.1  christos 	ax = fabsf(x);
    168  1.1  christos 	ay = fabsf(y);
    169  1.1  christos 
    170  1.1  christos 	if (isnan(x) || isnan(y)) {
    171  1.1  christos 		if (isinf(x))
    172  1.1  christos 			return (CMPLXF(x, y + y));
    173  1.1  christos 		if (isinf(y))
    174  1.1  christos 			return (CMPLXF(y, x + x));
    175  1.1  christos 		if (y == 0)
    176  1.1  christos 			return (CMPLXF(x + x, y));
    177  1.1  christos 		return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
    178  1.1  christos 	}
    179  1.1  christos 
    180  1.1  christos 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
    181  1.1  christos 		if (signbit(x) == 0)
    182  1.1  christos 			w = clog_for_large_values(z) + m_ln2;
    183  1.1  christos 		else
    184  1.1  christos 			w = clog_for_large_values(-z) + m_ln2;
    185  1.1  christos 		return (CMPLXF(copysignf(crealf(w), x),
    186  1.1  christos 		    copysignf(cimagf(w), y)));
    187  1.1  christos 	}
    188  1.1  christos 
    189  1.1  christos 	if (x == 0 && y == 0)
    190  1.1  christos 		return (z);
    191  1.1  christos 
    192  1.1  christos 	raise_inexact();
    193  1.1  christos 
    194  1.1  christos 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
    195  1.1  christos 		return (z);
    196  1.1  christos 
    197  1.1  christos 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
    198  1.1  christos 	if (B_is_usable)
    199  1.1  christos 		ry = asinf(B);
    200  1.1  christos 	else
    201  1.1  christos 		ry = atan2f(new_y, sqrt_A2my2);
    202  1.1  christos 	return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
    203  1.1  christos }
    204  1.1  christos 
    205  1.1  christos float complex
    206  1.1  christos casinf(float complex z)
    207  1.1  christos {
    208  1.1  christos 	float complex w = casinhf(CMPLXF(cimagf(z), crealf(z)));
    209  1.1  christos 
    210  1.1  christos 	return (CMPLXF(cimagf(w), crealf(w)));
    211  1.1  christos }
    212  1.1  christos 
    213  1.1  christos float complex
    214  1.1  christos cacosf(float complex z)
    215  1.1  christos {
    216  1.1  christos 	float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
    217  1.1  christos 	int sx, sy;
    218  1.1  christos 	int B_is_usable;
    219  1.1  christos 	float complex w;
    220  1.1  christos 
    221  1.1  christos 	x = crealf(z);
    222  1.1  christos 	y = cimagf(z);
    223  1.1  christos 	sx = signbit(x);
    224  1.1  christos 	sy = signbit(y);
    225  1.1  christos 	ax = fabsf(x);
    226  1.1  christos 	ay = fabsf(y);
    227  1.1  christos 
    228  1.1  christos 	if (isnan(x) || isnan(y)) {
    229  1.1  christos 		if (isinf(x))
    230  1.1  christos 			return (CMPLXF(y + y, -INFINITY));
    231  1.1  christos 		if (isinf(y))
    232  1.1  christos 			return (CMPLXF(x + x, -y));
    233  1.1  christos 		if (x == 0)
    234  1.1  christos 			return (CMPLXF(pio2_hi + pio2_lo, y + y));
    235  1.1  christos 		return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
    236  1.1  christos 	}
    237  1.1  christos 
    238  1.1  christos 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
    239  1.1  christos 		w = clog_for_large_values(z);
    240  1.1  christos 		rx = fabsf(cimagf(w));
    241  1.1  christos 		ry = crealf(w) + m_ln2;
    242  1.1  christos 		if (sy == 0)
    243  1.1  christos 			ry = -ry;
    244  1.1  christos 		return (CMPLXF(rx, ry));
    245  1.1  christos 	}
    246  1.1  christos 
    247  1.1  christos 	if (x == 1 && y == 0)
    248  1.1  christos 		return (CMPLXF(0, -y));
    249  1.1  christos 
    250  1.1  christos 	raise_inexact();
    251  1.1  christos 
    252  1.1  christos 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
    253  1.1  christos 		return (CMPLXF(pio2_hi - (x - pio2_lo), -y));
    254  1.1  christos 
    255  1.1  christos 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
    256  1.1  christos 	if (B_is_usable) {
    257  1.1  christos 		if (sx == 0)
    258  1.1  christos 			rx = acosf(B);
    259  1.1  christos 		else
    260  1.1  christos 			rx = acosf(-B);
    261  1.1  christos 	} else {
    262  1.1  christos 		if (sx == 0)
    263  1.1  christos 			rx = atan2f(sqrt_A2mx2, new_x);
    264  1.1  christos 		else
    265  1.1  christos 			rx = atan2f(sqrt_A2mx2, -new_x);
    266  1.1  christos 	}
    267  1.1  christos 	if (sy == 0)
    268  1.1  christos 		ry = -ry;
    269  1.1  christos 	return (CMPLXF(rx, ry));
    270  1.1  christos }
    271  1.1  christos 
    272  1.1  christos float complex
    273  1.1  christos cacoshf(float complex z)
    274  1.1  christos {
    275  1.1  christos 	float complex w;
    276  1.1  christos 	float rx, ry;
    277  1.1  christos 
    278  1.1  christos 	w = cacosf(z);
    279  1.1  christos 	rx = crealf(w);
    280  1.1  christos 	ry = cimagf(w);
    281  1.1  christos 	if (isnan(rx) && isnan(ry))
    282  1.1  christos 		return (CMPLXF(ry, rx));
    283  1.1  christos 	if (isnan(rx))
    284  1.1  christos 		return (CMPLXF(fabsf(ry), rx));
    285  1.1  christos 	if (isnan(ry))
    286  1.1  christos 		return (CMPLXF(ry, ry));
    287  1.1  christos 	return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z))));
    288  1.1  christos }
    289  1.1  christos 
    290  1.1  christos static float complex
    291  1.1  christos clog_for_large_values(float complex z)
    292  1.1  christos {
    293  1.1  christos 	float x, y;
    294  1.1  christos 	float ax, ay, t;
    295  1.1  christos 
    296  1.1  christos 	x = crealf(z);
    297  1.1  christos 	y = cimagf(z);
    298  1.1  christos 	ax = fabsf(x);
    299  1.1  christos 	ay = fabsf(y);
    300  1.1  christos 	if (ax < ay) {
    301  1.1  christos 		t = ax;
    302  1.1  christos 		ax = ay;
    303  1.1  christos 		ay = t;
    304  1.1  christos 	}
    305  1.1  christos 
    306  1.1  christos 	if (ax > FLT_MAX / 2)
    307  1.1  christos 		return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1,
    308  1.1  christos 		    atan2f(y, x)));
    309  1.1  christos 
    310  1.1  christos 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
    311  1.1  christos 		return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x)));
    312  1.1  christos 
    313  1.1  christos 	return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
    314  1.1  christos }
    315  1.1  christos 
    316  1.1  christos static inline float
    317  1.1  christos sum_squares(float x, float y)
    318  1.1  christos {
    319  1.1  christos 
    320  1.1  christos 	if (y < SQRT_MIN)
    321  1.1  christos 		return (x * x);
    322  1.1  christos 
    323  1.1  christos 	return (x * x + y * y);
    324  1.1  christos }
    325  1.1  christos 
    326  1.1  christos static inline float
    327  1.1  christos real_part_reciprocal(float x, float y)
    328  1.1  christos {
    329  1.1  christos 	float scale;
    330  1.1  christos 	uint32_t hx, hy;
    331  1.1  christos 	int32_t ix, iy;
    332  1.1  christos 
    333  1.1  christos 	GET_FLOAT_WORD(hx, x);
    334  1.1  christos 	ix = hx & 0x7f800000;
    335  1.1  christos 	GET_FLOAT_WORD(hy, y);
    336  1.1  christos 	iy = hy & 0x7f800000;
    337  1.1  christos #define	BIAS	(FLT_MAX_EXP - 1)
    338  1.1  christos #define	CUTOFF	(FLT_MANT_DIG / 2 + 1)
    339  1.1  christos 	if (ix - iy >= CUTOFF << 23 || isinf(x))
    340  1.1  christos 		return (1 / x);
    341  1.1  christos 	if (iy - ix >= CUTOFF << 23)
    342  1.1  christos 		return (x / y / y);
    343  1.1  christos 	if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
    344  1.1  christos 		return (x / (x * x + y * y));
    345  1.1  christos 	SET_FLOAT_WORD(scale, 0x7f800000 - ix);
    346  1.1  christos 	x *= scale;
    347  1.1  christos 	y *= scale;
    348  1.1  christos 	return (x / (x * x + y * y) * scale);
    349  1.1  christos }
    350  1.1  christos 
    351  1.1  christos float complex
    352  1.1  christos catanhf(float complex z)
    353  1.1  christos {
    354  1.1  christos 	float x, y, ax, ay, rx, ry;
    355  1.1  christos 
    356  1.1  christos 	x = crealf(z);
    357  1.1  christos 	y = cimagf(z);
    358  1.1  christos 	ax = fabsf(x);
    359  1.1  christos 	ay = fabsf(y);
    360  1.1  christos 
    361  1.1  christos 	if (y == 0 && ax <= 1)
    362  1.1  christos 		return (CMPLXF(atanhf(x), y));
    363  1.1  christos 
    364  1.1  christos 	if (x == 0)
    365  1.1  christos 		return (CMPLXF(x, atanf(y)));
    366  1.1  christos 
    367  1.1  christos 	if (isnan(x) || isnan(y)) {
    368  1.1  christos 		if (isinf(x))
    369  1.1  christos 			return (CMPLXF(copysignf(0, x), y + y));
    370  1.1  christos 		if (isinf(y))
    371  1.1  christos 			return (CMPLXF(copysignf(0, x),
    372  1.1  christos 			    copysignf(pio2_hi + pio2_lo, y)));
    373  1.1  christos 		return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
    374  1.1  christos 	}
    375  1.1  christos 
    376  1.1  christos 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
    377  1.1  christos 		return (CMPLXF(real_part_reciprocal(x, y),
    378  1.1  christos 		    copysignf(pio2_hi + pio2_lo, y)));
    379  1.1  christos 
    380  1.1  christos 	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
    381  1.1  christos 		raise_inexact();
    382  1.1  christos 		return (z);
    383  1.1  christos 	}
    384  1.1  christos 
    385  1.1  christos 	if (ax == 1 && ay < FLT_EPSILON)
    386  1.1  christos 		rx = (m_ln2 - logf(ay)) / 2;
    387  1.1  christos 	else
    388  1.1  christos 		rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
    389  1.1  christos 
    390  1.1  christos 	if (ax == 1)
    391  1.1  christos 		ry = atan2f(2, -ay) / 2;
    392  1.1  christos 	else if (ay < FLT_EPSILON)
    393  1.1  christos 		ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
    394  1.1  christos 	else
    395  1.1  christos 		ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
    396  1.1  christos 
    397  1.1  christos 	return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
    398  1.1  christos }
    399  1.1  christos 
    400  1.1  christos float complex
    401  1.1  christos catanf(float complex z)
    402  1.1  christos {
    403  1.1  christos 	float complex w = catanhf(CMPLXF(cimagf(z), crealf(z)));
    404  1.1  christos 
    405  1.1  christos 	return (CMPLXF(cimagf(w), crealf(w)));
    406  1.1  christos }
    407