catrigf.c revision 1.2 1 1.2 rillig /* $NetBSD: catrigf.c,v 1.2 2022/04/19 20:32:16 rillig Exp $ */
2 1.1 christos /*-
3 1.1 christos * Copyright (c) 2012 Stephen Montgomery-Smith <stephen (at) FreeBSD.ORG>
4 1.1 christos * All rights reserved.
5 1.1 christos *
6 1.1 christos * Redistribution and use in source and binary forms, with or without
7 1.1 christos * modification, are permitted provided that the following conditions
8 1.1 christos * are met:
9 1.1 christos * 1. Redistributions of source code must retain the above copyright
10 1.1 christos * notice, this list of conditions and the following disclaimer.
11 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 christos * notice, this list of conditions and the following disclaimer in the
13 1.1 christos * documentation and/or other materials provided with the distribution.
14 1.1 christos *
15 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1 christos * SUCH DAMAGE.
26 1.1 christos */
27 1.1 christos
28 1.1 christos /*
29 1.1 christos * The algorithm is very close to that in "Implementing the complex arcsine
30 1.1 christos * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
31 1.1 christos * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
32 1.1 christos * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
33 1.1 christos * http://dl.acm.org/citation.cfm?id=275324.
34 1.1 christos *
35 1.1 christos * See catrig.c for complete comments.
36 1.1 christos *
37 1.1 christos * XXX comments were removed automatically, and even short ones on the right
38 1.1 christos * of statements were removed (all of them), contrary to normal style. Only
39 1.1 christos * a few comments on the right of declarations remain.
40 1.1 christos */
41 1.1 christos
42 1.1 christos #include <sys/cdefs.h>
43 1.1 christos #if 0
44 1.1 christos __FBSDID("$FreeBSD: head/lib/msun/src/catrigf.c 275819 2014-12-16 09:21:56Z ed $");
45 1.1 christos #endif
46 1.2 rillig __RCSID("$NetBSD: catrigf.c,v 1.2 2022/04/19 20:32:16 rillig Exp $");
47 1.1 christos
48 1.1 christos #include "namespace.h"
49 1.1 christos #ifdef __weak_alias
50 1.1 christos __weak_alias(casinf, _casinf)
51 1.1 christos #endif
52 1.1 christos #ifdef __weak_alias
53 1.1 christos __weak_alias(catanf, _catanf)
54 1.1 christos #endif
55 1.1 christos
56 1.1 christos
57 1.1 christos #include <complex.h>
58 1.1 christos #include <float.h>
59 1.1 christos
60 1.1 christos #include "math.h"
61 1.1 christos #include "math_private.h"
62 1.1 christos
63 1.1 christos #undef isinf
64 1.1 christos #define isinf(x) (fabsf(x) == INFINITY)
65 1.1 christos #undef isnan
66 1.1 christos #define isnan(x) ((x) != (x))
67 1.2 rillig #define raise_inexact() do { volatile float junk __unused = /*LINTED*/1 + tiny; } while (0)
68 1.1 christos #undef signbit
69 1.1 christos #define signbit(x) (__builtin_signbitf(x))
70 1.1 christos
71 1.1 christos static const float
72 1.1 christos A_crossover = 10,
73 1.1 christos B_crossover = 0.6417,
74 1.1 christos FOUR_SQRT_MIN = 0x1p-61,
75 1.1 christos QUARTER_SQRT_MAX = 0x1p61,
76 1.1 christos m_e = 2.7182818285e0, /* 0xadf854.0p-22 */
77 1.1 christos m_ln2 = 6.9314718056e-1, /* 0xb17218.0p-24 */
78 1.1 christos pio2_hi = 1.5707962513e0, /* 0xc90fda.0p-23 */
79 1.1 christos RECIP_EPSILON = 1 / FLT_EPSILON,
80 1.1 christos SQRT_3_EPSILON = 5.9801995673e-4, /* 0x9cc471.0p-34 */
81 1.1 christos SQRT_6_EPSILON = 8.4572793338e-4, /* 0xddb3d7.0p-34 */
82 1.1 christos SQRT_MIN = 0x1p-63;
83 1.1 christos
84 1.1 christos static const volatile float
85 1.1 christos pio2_lo = 7.5497899549e-8, /* 0xa22169.0p-47 */
86 1.1 christos tiny = 0x1p-100;
87 1.1 christos
88 1.1 christos static float complex clog_for_large_values(float complex z);
89 1.1 christos
90 1.1 christos static inline float
91 1.1 christos f(float a, float b, float hypot_a_b)
92 1.1 christos {
93 1.1 christos if (b < 0)
94 1.1 christos return ((hypot_a_b - b) / 2);
95 1.1 christos if (b == 0)
96 1.1 christos return (a / 2);
97 1.1 christos return (a * a / (hypot_a_b + b) / 2);
98 1.1 christos }
99 1.1 christos
100 1.1 christos static inline void
101 1.1 christos do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
102 1.1 christos float *sqrt_A2my2, float *new_y)
103 1.1 christos {
104 1.1 christos float R, S, A;
105 1.1 christos float Am1, Amy;
106 1.1 christos
107 1.1 christos R = hypotf(x, y + 1);
108 1.1 christos S = hypotf(x, y - 1);
109 1.1 christos
110 1.1 christos A = (R + S) / 2;
111 1.1 christos if (A < 1)
112 1.1 christos A = 1;
113 1.1 christos
114 1.1 christos if (A < A_crossover) {
115 1.1 christos if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
116 1.1 christos *rx = sqrtf(x);
117 1.1 christos } else if (x >= FLT_EPSILON * fabsf(y - 1)) {
118 1.1 christos Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
119 1.1 christos *rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
120 1.1 christos } else if (y < 1) {
121 1.1 christos *rx = x / sqrtf((1 - y) * (1 + y));
122 1.1 christos } else {
123 1.1 christos *rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
124 1.1 christos }
125 1.1 christos } else {
126 1.1 christos *rx = logf(A + sqrtf(A * A - 1));
127 1.1 christos }
128 1.1 christos
129 1.1 christos *new_y = y;
130 1.1 christos
131 1.1 christos if (y < FOUR_SQRT_MIN) {
132 1.1 christos *B_is_usable = 0;
133 1.1 christos *sqrt_A2my2 = A * (2 / FLT_EPSILON);
134 1.1 christos *new_y = y * (2 / FLT_EPSILON);
135 1.1 christos return;
136 1.1 christos }
137 1.1 christos
138 1.1 christos *B = y / A;
139 1.1 christos *B_is_usable = 1;
140 1.1 christos
141 1.1 christos if (*B > B_crossover) {
142 1.1 christos *B_is_usable = 0;
143 1.1 christos if (y == 1 && x < FLT_EPSILON / 128) {
144 1.1 christos *sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
145 1.1 christos } else if (x >= FLT_EPSILON * fabsf(y - 1)) {
146 1.1 christos Amy = f(x, y + 1, R) + f(x, y - 1, S);
147 1.1 christos *sqrt_A2my2 = sqrtf(Amy * (A + y));
148 1.1 christos } else if (y > 1) {
149 1.1 christos *sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
150 1.1 christos sqrtf((y + 1) * (y - 1));
151 1.1 christos *new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
152 1.1 christos } else {
153 1.1 christos *sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
154 1.1 christos }
155 1.1 christos }
156 1.1 christos }
157 1.1 christos
158 1.1 christos float complex
159 1.1 christos casinhf(float complex z)
160 1.1 christos {
161 1.1 christos float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
162 1.1 christos int B_is_usable;
163 1.1 christos float complex w;
164 1.1 christos
165 1.1 christos x = crealf(z);
166 1.1 christos y = cimagf(z);
167 1.1 christos ax = fabsf(x);
168 1.1 christos ay = fabsf(y);
169 1.1 christos
170 1.1 christos if (isnan(x) || isnan(y)) {
171 1.1 christos if (isinf(x))
172 1.1 christos return (CMPLXF(x, y + y));
173 1.1 christos if (isinf(y))
174 1.1 christos return (CMPLXF(y, x + x));
175 1.1 christos if (y == 0)
176 1.1 christos return (CMPLXF(x + x, y));
177 1.1 christos return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
178 1.1 christos }
179 1.1 christos
180 1.1 christos if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
181 1.1 christos if (signbit(x) == 0)
182 1.1 christos w = clog_for_large_values(z) + m_ln2;
183 1.1 christos else
184 1.1 christos w = clog_for_large_values(-z) + m_ln2;
185 1.1 christos return (CMPLXF(copysignf(crealf(w), x),
186 1.1 christos copysignf(cimagf(w), y)));
187 1.1 christos }
188 1.1 christos
189 1.1 christos if (x == 0 && y == 0)
190 1.1 christos return (z);
191 1.1 christos
192 1.1 christos raise_inexact();
193 1.1 christos
194 1.1 christos if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
195 1.1 christos return (z);
196 1.1 christos
197 1.1 christos do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
198 1.1 christos if (B_is_usable)
199 1.1 christos ry = asinf(B);
200 1.1 christos else
201 1.1 christos ry = atan2f(new_y, sqrt_A2my2);
202 1.1 christos return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
203 1.1 christos }
204 1.1 christos
205 1.1 christos float complex
206 1.1 christos casinf(float complex z)
207 1.1 christos {
208 1.1 christos float complex w = casinhf(CMPLXF(cimagf(z), crealf(z)));
209 1.1 christos
210 1.1 christos return (CMPLXF(cimagf(w), crealf(w)));
211 1.1 christos }
212 1.1 christos
213 1.1 christos float complex
214 1.1 christos cacosf(float complex z)
215 1.1 christos {
216 1.1 christos float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
217 1.1 christos int sx, sy;
218 1.1 christos int B_is_usable;
219 1.1 christos float complex w;
220 1.1 christos
221 1.1 christos x = crealf(z);
222 1.1 christos y = cimagf(z);
223 1.1 christos sx = signbit(x);
224 1.1 christos sy = signbit(y);
225 1.1 christos ax = fabsf(x);
226 1.1 christos ay = fabsf(y);
227 1.1 christos
228 1.1 christos if (isnan(x) || isnan(y)) {
229 1.1 christos if (isinf(x))
230 1.1 christos return (CMPLXF(y + y, -INFINITY));
231 1.1 christos if (isinf(y))
232 1.1 christos return (CMPLXF(x + x, -y));
233 1.1 christos if (x == 0)
234 1.1 christos return (CMPLXF(pio2_hi + pio2_lo, y + y));
235 1.1 christos return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
236 1.1 christos }
237 1.1 christos
238 1.1 christos if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
239 1.1 christos w = clog_for_large_values(z);
240 1.1 christos rx = fabsf(cimagf(w));
241 1.1 christos ry = crealf(w) + m_ln2;
242 1.1 christos if (sy == 0)
243 1.1 christos ry = -ry;
244 1.1 christos return (CMPLXF(rx, ry));
245 1.1 christos }
246 1.1 christos
247 1.1 christos if (x == 1 && y == 0)
248 1.1 christos return (CMPLXF(0, -y));
249 1.1 christos
250 1.1 christos raise_inexact();
251 1.1 christos
252 1.1 christos if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
253 1.1 christos return (CMPLXF(pio2_hi - (x - pio2_lo), -y));
254 1.1 christos
255 1.1 christos do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
256 1.1 christos if (B_is_usable) {
257 1.1 christos if (sx == 0)
258 1.1 christos rx = acosf(B);
259 1.1 christos else
260 1.1 christos rx = acosf(-B);
261 1.1 christos } else {
262 1.1 christos if (sx == 0)
263 1.1 christos rx = atan2f(sqrt_A2mx2, new_x);
264 1.1 christos else
265 1.1 christos rx = atan2f(sqrt_A2mx2, -new_x);
266 1.1 christos }
267 1.1 christos if (sy == 0)
268 1.1 christos ry = -ry;
269 1.1 christos return (CMPLXF(rx, ry));
270 1.1 christos }
271 1.1 christos
272 1.1 christos float complex
273 1.1 christos cacoshf(float complex z)
274 1.1 christos {
275 1.1 christos float complex w;
276 1.1 christos float rx, ry;
277 1.1 christos
278 1.1 christos w = cacosf(z);
279 1.1 christos rx = crealf(w);
280 1.1 christos ry = cimagf(w);
281 1.1 christos if (isnan(rx) && isnan(ry))
282 1.1 christos return (CMPLXF(ry, rx));
283 1.1 christos if (isnan(rx))
284 1.1 christos return (CMPLXF(fabsf(ry), rx));
285 1.1 christos if (isnan(ry))
286 1.1 christos return (CMPLXF(ry, ry));
287 1.1 christos return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z))));
288 1.1 christos }
289 1.1 christos
290 1.1 christos static float complex
291 1.1 christos clog_for_large_values(float complex z)
292 1.1 christos {
293 1.1 christos float x, y;
294 1.1 christos float ax, ay, t;
295 1.1 christos
296 1.1 christos x = crealf(z);
297 1.1 christos y = cimagf(z);
298 1.1 christos ax = fabsf(x);
299 1.1 christos ay = fabsf(y);
300 1.1 christos if (ax < ay) {
301 1.1 christos t = ax;
302 1.1 christos ax = ay;
303 1.1 christos ay = t;
304 1.1 christos }
305 1.1 christos
306 1.1 christos if (ax > FLT_MAX / 2)
307 1.1 christos return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1,
308 1.1 christos atan2f(y, x)));
309 1.1 christos
310 1.1 christos if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
311 1.1 christos return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x)));
312 1.1 christos
313 1.1 christos return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
314 1.1 christos }
315 1.1 christos
316 1.1 christos static inline float
317 1.1 christos sum_squares(float x, float y)
318 1.1 christos {
319 1.1 christos
320 1.1 christos if (y < SQRT_MIN)
321 1.1 christos return (x * x);
322 1.1 christos
323 1.1 christos return (x * x + y * y);
324 1.1 christos }
325 1.1 christos
326 1.1 christos static inline float
327 1.1 christos real_part_reciprocal(float x, float y)
328 1.1 christos {
329 1.1 christos float scale;
330 1.1 christos uint32_t hx, hy;
331 1.1 christos int32_t ix, iy;
332 1.1 christos
333 1.1 christos GET_FLOAT_WORD(hx, x);
334 1.1 christos ix = hx & 0x7f800000;
335 1.1 christos GET_FLOAT_WORD(hy, y);
336 1.1 christos iy = hy & 0x7f800000;
337 1.1 christos #define BIAS (FLT_MAX_EXP - 1)
338 1.1 christos #define CUTOFF (FLT_MANT_DIG / 2 + 1)
339 1.1 christos if (ix - iy >= CUTOFF << 23 || isinf(x))
340 1.1 christos return (1 / x);
341 1.1 christos if (iy - ix >= CUTOFF << 23)
342 1.1 christos return (x / y / y);
343 1.1 christos if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
344 1.1 christos return (x / (x * x + y * y));
345 1.1 christos SET_FLOAT_WORD(scale, 0x7f800000 - ix);
346 1.1 christos x *= scale;
347 1.1 christos y *= scale;
348 1.1 christos return (x / (x * x + y * y) * scale);
349 1.1 christos }
350 1.1 christos
351 1.1 christos float complex
352 1.1 christos catanhf(float complex z)
353 1.1 christos {
354 1.1 christos float x, y, ax, ay, rx, ry;
355 1.1 christos
356 1.1 christos x = crealf(z);
357 1.1 christos y = cimagf(z);
358 1.1 christos ax = fabsf(x);
359 1.1 christos ay = fabsf(y);
360 1.1 christos
361 1.1 christos if (y == 0 && ax <= 1)
362 1.1 christos return (CMPLXF(atanhf(x), y));
363 1.1 christos
364 1.1 christos if (x == 0)
365 1.1 christos return (CMPLXF(x, atanf(y)));
366 1.1 christos
367 1.1 christos if (isnan(x) || isnan(y)) {
368 1.1 christos if (isinf(x))
369 1.1 christos return (CMPLXF(copysignf(0, x), y + y));
370 1.1 christos if (isinf(y))
371 1.1 christos return (CMPLXF(copysignf(0, x),
372 1.1 christos copysignf(pio2_hi + pio2_lo, y)));
373 1.1 christos return (CMPLXF(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
374 1.1 christos }
375 1.1 christos
376 1.1 christos if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
377 1.1 christos return (CMPLXF(real_part_reciprocal(x, y),
378 1.1 christos copysignf(pio2_hi + pio2_lo, y)));
379 1.1 christos
380 1.1 christos if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
381 1.1 christos raise_inexact();
382 1.1 christos return (z);
383 1.1 christos }
384 1.1 christos
385 1.1 christos if (ax == 1 && ay < FLT_EPSILON)
386 1.1 christos rx = (m_ln2 - logf(ay)) / 2;
387 1.1 christos else
388 1.1 christos rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
389 1.1 christos
390 1.1 christos if (ax == 1)
391 1.1 christos ry = atan2f(2, -ay) / 2;
392 1.1 christos else if (ay < FLT_EPSILON)
393 1.1 christos ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
394 1.1 christos else
395 1.1 christos ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
396 1.1 christos
397 1.1 christos return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
398 1.1 christos }
399 1.1 christos
400 1.1 christos float complex
401 1.1 christos catanf(float complex z)
402 1.1 christos {
403 1.1 christos float complex w = catanhf(CMPLXF(cimagf(z), crealf(z)));
404 1.1 christos
405 1.1 christos return (CMPLXF(cimagf(w), crealf(w)));
406 1.1 christos }
407