csqrt.c revision 1.3 1 1.3 maya /* $NetBSD: csqrt.c,v 1.3 2016/12/31 20:01:15 maya Exp $ */
2 1.1 drochner
3 1.1 drochner /*-
4 1.1 drochner * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 1.1 drochner * All rights reserved.
6 1.1 drochner *
7 1.1 drochner * This code is derived from software written by Stephen L. Moshier.
8 1.1 drochner * It is redistributed by the NetBSD Foundation by permission of the author.
9 1.1 drochner *
10 1.1 drochner * Redistribution and use in source and binary forms, with or without
11 1.1 drochner * modification, are permitted provided that the following conditions
12 1.1 drochner * are met:
13 1.1 drochner * 1. Redistributions of source code must retain the above copyright
14 1.1 drochner * notice, this list of conditions and the following disclaimer.
15 1.1 drochner * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 drochner * notice, this list of conditions and the following disclaimer in the
17 1.1 drochner * documentation and/or other materials provided with the distribution.
18 1.1 drochner *
19 1.1 drochner * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 drochner * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 drochner * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 drochner * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 drochner * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 drochner * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 drochner * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 drochner * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 drochner * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 drochner * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 drochner * POSSIBILITY OF SUCH DAMAGE.
30 1.1 drochner */
31 1.1 drochner
32 1.1 drochner #include <complex.h>
33 1.1 drochner #include <math.h>
34 1.1 drochner
35 1.1 drochner double complex
36 1.1 drochner csqrt(double complex z)
37 1.1 drochner {
38 1.1 drochner double complex w;
39 1.1 drochner double x, y, r, t, scale;
40 1.1 drochner
41 1.1 drochner x = creal (z);
42 1.1 drochner y = cimag (z);
43 1.1 drochner
44 1.3 maya /* Input is a real number that isn't on the branch cut */
45 1.3 maya if ((y == 0.0) && !signbit(y)) {
46 1.1 drochner if (x == 0.0) {
47 1.1 drochner w = 0.0 + y * I;
48 1.1 drochner } else {
49 1.1 drochner if (x < 0.0) {
50 1.2 maya r = sqrt(-x);
51 1.1 drochner w = 0.0 + r * I;
52 1.1 drochner } else {
53 1.2 maya r = sqrt(x);
54 1.2 maya w = r;
55 1.1 drochner }
56 1.1 drochner }
57 1.1 drochner return w;
58 1.1 drochner }
59 1.1 drochner if (x == 0.0) {
60 1.2 maya if (y > 0) {
61 1.2 maya r = sqrt(0.5 * y);
62 1.1 drochner w = r + r * I;
63 1.2 maya } else {
64 1.2 maya r = sqrt(-0.5 * y);
65 1.1 drochner w = r - r * I;
66 1.2 maya }
67 1.1 drochner return w;
68 1.1 drochner }
69 1.1 drochner /* Rescale to avoid internal overflow or underflow. */
70 1.1 drochner if ((fabs(x) > 4.0) || (fabs(y) > 4.0)) {
71 1.1 drochner x *= 0.25;
72 1.1 drochner y *= 0.25;
73 1.1 drochner scale = 2.0;
74 1.1 drochner } else {
75 1.1 drochner #if 1
76 1.1 drochner x *= 1.8014398509481984e16; /* 2^54 */
77 1.1 drochner y *= 1.8014398509481984e16;
78 1.1 drochner scale = 7.450580596923828125e-9; /* 2^-27 */
79 1.1 drochner #else
80 1.1 drochner x *= 4.0;
81 1.1 drochner y *= 4.0;
82 1.1 drochner scale = 0.5;
83 1.1 drochner #endif
84 1.1 drochner }
85 1.1 drochner w = x + y * I;
86 1.1 drochner r = cabs(w);
87 1.1 drochner if (x > 0) {
88 1.1 drochner t = sqrt(0.5 * r + 0.5 * x);
89 1.1 drochner r = scale * fabs((0.5 * y) / t );
90 1.1 drochner t *= scale;
91 1.1 drochner } else {
92 1.1 drochner r = sqrt(0.5 * r - 0.5 * x);
93 1.1 drochner t = scale * fabs((0.5 * y) / r);
94 1.1 drochner r *= scale;
95 1.1 drochner }
96 1.3 maya if (signbit(y))
97 1.1 drochner w = t - r * I;
98 1.1 drochner else
99 1.1 drochner w = t + r * I;
100 1.1 drochner return w;
101 1.1 drochner }
102