e_powl.c revision 1.1 1 1.1 christos /*-
2 1.1 christos * ====================================================
3 1.1 christos * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 1.1 christos *
5 1.1 christos * Developed at SunPro, a Sun Microsystems, Inc. business.
6 1.1 christos * Permission to use, copy, modify, and distribute this
7 1.1 christos * software is freely granted, provided that this notice
8 1.1 christos * is preserved.
9 1.1 christos * ====================================================
10 1.1 christos */
11 1.1 christos
12 1.1 christos /*
13 1.1 christos * Copyright (c) 2008 Stephen L. Moshier <steve (at) moshier.net>
14 1.1 christos *
15 1.1 christos * Permission to use, copy, modify, and distribute this software for any
16 1.1 christos * purpose with or without fee is hereby granted, provided that the above
17 1.1 christos * copyright notice and this permission notice appear in all copies.
18 1.1 christos *
19 1.1 christos * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20 1.1 christos * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21 1.1 christos * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22 1.1 christos * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23 1.1 christos * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24 1.1 christos * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25 1.1 christos * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26 1.1 christos */
27 1.1 christos
28 1.1 christos /* powl(x,y) return x**y
29 1.1 christos *
30 1.1 christos * n
31 1.1 christos * Method: Let x = 2 * (1+f)
32 1.1 christos * 1. Compute and return log2(x) in two pieces:
33 1.1 christos * log2(x) = w1 + w2,
34 1.1 christos * where w1 has 113-53 = 60 bit trailing zeros.
35 1.1 christos * 2. Perform y*log2(x) = n+y' by simulating multi-precision
36 1.1 christos * arithmetic, where |y'|<=0.5.
37 1.1 christos * 3. Return x**y = 2**n*exp(y'*log2)
38 1.1 christos *
39 1.1 christos * Special cases:
40 1.1 christos * 1. (anything) ** 0 is 1
41 1.1 christos * 2. (anything) ** 1 is itself
42 1.1 christos * 3. (anything) ** NAN is NAN
43 1.1 christos * 4. NAN ** (anything except 0) is NAN
44 1.1 christos * 5. +-(|x| > 1) ** +INF is +INF
45 1.1 christos * 6. +-(|x| > 1) ** -INF is +0
46 1.1 christos * 7. +-(|x| < 1) ** +INF is +0
47 1.1 christos * 8. +-(|x| < 1) ** -INF is +INF
48 1.1 christos * 9. +-1 ** +-INF is NAN
49 1.1 christos * 10. +0 ** (+anything except 0, NAN) is +0
50 1.1 christos * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
51 1.1 christos * 12. +0 ** (-anything except 0, NAN) is +INF
52 1.1 christos * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
53 1.1 christos * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54 1.1 christos * 15. +INF ** (+anything except 0,NAN) is +INF
55 1.1 christos * 16. +INF ** (-anything except 0,NAN) is +0
56 1.1 christos * 17. -INF ** (anything) = -0 ** (-anything)
57 1.1 christos * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58 1.1 christos * 19. (-anything except 0 and inf) ** (non-integer) is NAN
59 1.1 christos *
60 1.1 christos */
61 1.1 christos
62 1.1 christos #include <sys/cdefs.h>
63 1.1 christos #include <float.h>
64 1.1 christos #include <math.h>
65 1.1 christos
66 1.1 christos #include "math_private.h"
67 1.1 christos
68 1.1 christos static const long double bp[] = {
69 1.1 christos 1.0L,
70 1.1 christos 1.5L,
71 1.1 christos };
72 1.1 christos
73 1.1 christos /* log_2(1.5) */
74 1.1 christos static const long double dp_h[] = {
75 1.1 christos 0.0,
76 1.1 christos 5.8496250072115607565592654282227158546448E-1L
77 1.1 christos };
78 1.1 christos
79 1.1 christos /* Low part of log_2(1.5) */
80 1.1 christos static const long double dp_l[] = {
81 1.1 christos 0.0,
82 1.1 christos 1.0579781240112554492329533686862998106046E-16L
83 1.1 christos };
84 1.1 christos
85 1.1 christos static const long double zero = 0.0L,
86 1.1 christos one = 1.0L,
87 1.1 christos two = 2.0L,
88 1.1 christos two113 = 1.0384593717069655257060992658440192E34L,
89 1.1 christos huge = 1.0e3000L,
90 1.1 christos tiny = 1.0e-3000L;
91 1.1 christos
92 1.1 christos /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
93 1.1 christos z = (x-1)/(x+1)
94 1.1 christos 1 <= x <= 1.25
95 1.1 christos Peak relative error 2.3e-37 */
96 1.1 christos static const long double LN[] =
97 1.1 christos {
98 1.1 christos -3.0779177200290054398792536829702930623200E1L,
99 1.1 christos 6.5135778082209159921251824580292116201640E1L,
100 1.1 christos -4.6312921812152436921591152809994014413540E1L,
101 1.1 christos 1.2510208195629420304615674658258363295208E1L,
102 1.1 christos -9.9266909031921425609179910128531667336670E-1L
103 1.1 christos };
104 1.1 christos static const long double LD[] =
105 1.1 christos {
106 1.1 christos -5.129862866715009066465422805058933131960E1L,
107 1.1 christos 1.452015077564081884387441590064272782044E2L,
108 1.1 christos -1.524043275549860505277434040464085593165E2L,
109 1.1 christos 7.236063513651544224319663428634139768808E1L,
110 1.1 christos -1.494198912340228235853027849917095580053E1L
111 1.1 christos /* 1.0E0 */
112 1.1 christos };
113 1.1 christos
114 1.1 christos /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
115 1.1 christos 0 <= x <= 0.5
116 1.1 christos Peak relative error 5.7e-38 */
117 1.1 christos static const long double PN[] =
118 1.1 christos {
119 1.1 christos 5.081801691915377692446852383385968225675E8L,
120 1.1 christos 9.360895299872484512023336636427675327355E6L,
121 1.1 christos 4.213701282274196030811629773097579432957E4L,
122 1.1 christos 5.201006511142748908655720086041570288182E1L,
123 1.1 christos 9.088368420359444263703202925095675982530E-3L,
124 1.1 christos };
125 1.1 christos static const long double PD[] =
126 1.1 christos {
127 1.1 christos 3.049081015149226615468111430031590411682E9L,
128 1.1 christos 1.069833887183886839966085436512368982758E8L,
129 1.1 christos 8.259257717868875207333991924545445705394E5L,
130 1.1 christos 1.872583833284143212651746812884298360922E3L,
131 1.1 christos /* 1.0E0 */
132 1.1 christos };
133 1.1 christos
134 1.1 christos static const long double
135 1.1 christos /* ln 2 */
136 1.1 christos lg2 = 6.9314718055994530941723212145817656807550E-1L,
137 1.1 christos lg2_h = 6.9314718055994528622676398299518041312695E-1L,
138 1.1 christos lg2_l = 2.3190468138462996154948554638754786504121E-17L,
139 1.1 christos ovt = 8.0085662595372944372e-0017L,
140 1.1 christos /* 2/(3*log(2)) */
141 1.1 christos cp = 9.6179669392597560490661645400126142495110E-1L,
142 1.1 christos cp_h = 9.6179669392597555432899980587535537779331E-1L,
143 1.1 christos cp_l = 5.0577616648125906047157785230014751039424E-17L;
144 1.1 christos
145 1.1 christos long double
146 1.1 christos powl(long double x, long double y)
147 1.1 christos {
148 1.1 christos long double z, ax, z_h, z_l, p_h, p_l;
149 1.1 christos long double yy1, t1, t2, r, s, t, u, v, w;
150 1.1 christos long double s2, s_h, s_l, t_h, t_l;
151 1.1 christos int32_t i, j, k, yisint, n;
152 1.1 christos u_int32_t ix, iy;
153 1.1 christos int32_t hx, hy;
154 1.1 christos ieee_quad_shape_type o, p, q;
155 1.1 christos
156 1.1 christos p.value = x;
157 1.1 christos hx = p.parts32.mswhi;
158 1.1 christos ix = hx & 0x7fffffff;
159 1.1 christos
160 1.1 christos q.value = y;
161 1.1 christos hy = q.parts32.mswhi;
162 1.1 christos iy = hy & 0x7fffffff;
163 1.1 christos
164 1.1 christos
165 1.1 christos /* y==zero: x**0 = 1 */
166 1.1 christos if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
167 1.1 christos return one;
168 1.1 christos
169 1.1 christos /* 1.0**y = 1; -1.0**+-Inf = 1 */
170 1.1 christos if (x == one)
171 1.1 christos return one;
172 1.1 christos if (x == -1.0L && iy == 0x7fff0000
173 1.1 christos && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
174 1.1 christos return one;
175 1.1 christos
176 1.1 christos /* +-NaN return x+y */
177 1.1 christos if ((ix > 0x7fff0000)
178 1.1 christos || ((ix == 0x7fff0000)
179 1.1 christos && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
180 1.1 christos || (iy > 0x7fff0000)
181 1.1 christos || ((iy == 0x7fff0000)
182 1.1 christos && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
183 1.1 christos return nan_mix(x, y);
184 1.1 christos
185 1.1 christos /* determine if y is an odd int when x < 0
186 1.1 christos * yisint = 0 ... y is not an integer
187 1.1 christos * yisint = 1 ... y is an odd int
188 1.1 christos * yisint = 2 ... y is an even int
189 1.1 christos */
190 1.1 christos yisint = 0;
191 1.1 christos if (hx < 0)
192 1.1 christos {
193 1.1 christos if (iy >= 0x40700000) /* 2^113 */
194 1.1 christos yisint = 2; /* even integer y */
195 1.1 christos else if (iy >= 0x3fff0000) /* 1.0 */
196 1.1 christos {
197 1.1 christos if (floorl (y) == y)
198 1.1 christos {
199 1.1 christos z = 0.5 * y;
200 1.1 christos if (floorl (z) == z)
201 1.1 christos yisint = 2;
202 1.1 christos else
203 1.1 christos yisint = 1;
204 1.1 christos }
205 1.1 christos }
206 1.1 christos }
207 1.1 christos
208 1.1 christos /* special value of y */
209 1.1 christos if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
210 1.1 christos {
211 1.1 christos if (iy == 0x7fff0000) /* y is +-inf */
212 1.1 christos {
213 1.1 christos if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
214 1.1 christos p.parts32.lswlo) == 0)
215 1.1 christos return y - y; /* +-1**inf is NaN */
216 1.1 christos else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
217 1.1 christos return (hy >= 0) ? y : zero;
218 1.1 christos else /* (|x|<1)**-,+inf = inf,0 */
219 1.1 christos return (hy < 0) ? -y : zero;
220 1.1 christos }
221 1.1 christos if (iy == 0x3fff0000)
222 1.1 christos { /* y is +-1 */
223 1.1 christos if (hy < 0)
224 1.1 christos return one / x;
225 1.1 christos else
226 1.1 christos return x;
227 1.1 christos }
228 1.1 christos if (hy == 0x40000000)
229 1.1 christos return x * x; /* y is 2 */
230 1.1 christos if (hy == 0x3ffe0000)
231 1.1 christos { /* y is 0.5 */
232 1.1 christos if (hx >= 0) /* x >= +0 */
233 1.1 christos return sqrtl (x);
234 1.1 christos }
235 1.1 christos }
236 1.1 christos
237 1.1 christos ax = fabsl (x);
238 1.1 christos /* special value of x */
239 1.1 christos if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
240 1.1 christos {
241 1.1 christos if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
242 1.1 christos {
243 1.1 christos z = ax; /*x is +-0,+-inf,+-1 */
244 1.1 christos if (hy < 0)
245 1.1 christos z = one / z; /* z = (1/|x|) */
246 1.1 christos if (hx < 0)
247 1.1 christos {
248 1.1 christos if (((ix - 0x3fff0000) | yisint) == 0)
249 1.1 christos {
250 1.1 christos z = (z - z) / (z - z); /* (-1)**non-int is NaN */
251 1.1 christos }
252 1.1 christos else if (yisint == 1)
253 1.1 christos z = -z; /* (x<0)**odd = -(|x|**odd) */
254 1.1 christos }
255 1.1 christos return z;
256 1.1 christos }
257 1.1 christos }
258 1.1 christos
259 1.1 christos /* (x<0)**(non-int) is NaN */
260 1.1 christos if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
261 1.1 christos return (x - x) / (x - x);
262 1.1 christos
263 1.1 christos /* |y| is huge.
264 1.1 christos 2^-16495 = 1/2 of smallest representable value.
265 1.1 christos If (1 - 1/131072)^y underflows, y > 1.4986e9 */
266 1.1 christos if (iy > 0x401d654b)
267 1.1 christos {
268 1.1 christos /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
269 1.1 christos if (iy > 0x407d654b)
270 1.1 christos {
271 1.1 christos if (ix <= 0x3ffeffff)
272 1.1 christos return (hy < 0) ? huge * huge : tiny * tiny;
273 1.1 christos if (ix >= 0x3fff0000)
274 1.1 christos return (hy > 0) ? huge * huge : tiny * tiny;
275 1.1 christos }
276 1.1 christos /* over/underflow if x is not close to one */
277 1.1 christos if (ix < 0x3ffeffff)
278 1.1 christos return (hy < 0) ? huge * huge : tiny * tiny;
279 1.1 christos if (ix > 0x3fff0000)
280 1.1 christos return (hy > 0) ? huge * huge : tiny * tiny;
281 1.1 christos }
282 1.1 christos
283 1.1 christos n = 0;
284 1.1 christos /* take care subnormal number */
285 1.1 christos if (ix < 0x00010000)
286 1.1 christos {
287 1.1 christos ax *= two113;
288 1.1 christos n -= 113;
289 1.1 christos o.value = ax;
290 1.1 christos ix = o.parts32.mswhi;
291 1.1 christos }
292 1.1 christos n += ((ix) >> 16) - 0x3fff;
293 1.1 christos j = ix & 0x0000ffff;
294 1.1 christos /* determine interval */
295 1.1 christos ix = j | 0x3fff0000; /* normalize ix */
296 1.1 christos if (j <= 0x3988)
297 1.1 christos k = 0; /* |x|<sqrt(3/2) */
298 1.1 christos else if (j < 0xbb67)
299 1.1 christos k = 1; /* |x|<sqrt(3) */
300 1.1 christos else
301 1.1 christos {
302 1.1 christos k = 0;
303 1.1 christos n += 1;
304 1.1 christos ix -= 0x00010000;
305 1.1 christos }
306 1.1 christos
307 1.1 christos o.value = ax;
308 1.1 christos o.parts32.mswhi = ix;
309 1.1 christos ax = o.value;
310 1.1 christos
311 1.1 christos /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
312 1.1 christos u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
313 1.1 christos v = one / (ax + bp[k]);
314 1.1 christos s = u * v;
315 1.1 christos s_h = s;
316 1.1 christos
317 1.1 christos o.value = s_h;
318 1.1 christos o.parts32.lswlo = 0;
319 1.1 christos o.parts32.lswhi &= 0xf8000000;
320 1.1 christos s_h = o.value;
321 1.1 christos /* t_h=ax+bp[k] High */
322 1.1 christos t_h = ax + bp[k];
323 1.1 christos o.value = t_h;
324 1.1 christos o.parts32.lswlo = 0;
325 1.1 christos o.parts32.lswhi &= 0xf8000000;
326 1.1 christos t_h = o.value;
327 1.1 christos t_l = ax - (t_h - bp[k]);
328 1.1 christos s_l = v * ((u - s_h * t_h) - s_h * t_l);
329 1.1 christos /* compute log(ax) */
330 1.1 christos s2 = s * s;
331 1.1 christos u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
332 1.1 christos v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
333 1.1 christos r = s2 * s2 * u / v;
334 1.1 christos r += s_l * (s_h + s);
335 1.1 christos s2 = s_h * s_h;
336 1.1 christos t_h = 3.0 + s2 + r;
337 1.1 christos o.value = t_h;
338 1.1 christos o.parts32.lswlo = 0;
339 1.1 christos o.parts32.lswhi &= 0xf8000000;
340 1.1 christos t_h = o.value;
341 1.1 christos t_l = r - ((t_h - 3.0) - s2);
342 1.1 christos /* u+v = s*(1+...) */
343 1.1 christos u = s_h * t_h;
344 1.1 christos v = s_l * t_h + t_l * s;
345 1.1 christos /* 2/(3log2)*(s+...) */
346 1.1 christos p_h = u + v;
347 1.1 christos o.value = p_h;
348 1.1 christos o.parts32.lswlo = 0;
349 1.1 christos o.parts32.lswhi &= 0xf8000000;
350 1.1 christos p_h = o.value;
351 1.1 christos p_l = v - (p_h - u);
352 1.1 christos z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
353 1.1 christos z_l = cp_l * p_h + p_l * cp + dp_l[k];
354 1.1 christos /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
355 1.1 christos t = (long double) n;
356 1.1 christos t1 = (((z_h + z_l) + dp_h[k]) + t);
357 1.1 christos o.value = t1;
358 1.1 christos o.parts32.lswlo = 0;
359 1.1 christos o.parts32.lswhi &= 0xf8000000;
360 1.1 christos t1 = o.value;
361 1.1 christos t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
362 1.1 christos
363 1.1 christos /* s (sign of result -ve**odd) = -1 else = 1 */
364 1.1 christos s = one;
365 1.1 christos if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
366 1.1 christos s = -one; /* (-ve)**(odd int) */
367 1.1 christos
368 1.1 christos /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
369 1.1 christos yy1 = y;
370 1.1 christos o.value = yy1;
371 1.1 christos o.parts32.lswlo = 0;
372 1.1 christos o.parts32.lswhi &= 0xf8000000;
373 1.1 christos yy1 = o.value;
374 1.1 christos p_l = (y - yy1) * t1 + y * t2;
375 1.1 christos p_h = yy1 * t1;
376 1.1 christos z = p_l + p_h;
377 1.1 christos o.value = z;
378 1.1 christos j = o.parts32.mswhi;
379 1.1 christos if (j >= 0x400d0000) /* z >= 16384 */
380 1.1 christos {
381 1.1 christos /* if z > 16384 */
382 1.1 christos if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
383 1.1 christos o.parts32.lswlo) != 0)
384 1.1 christos return s * huge * huge; /* overflow */
385 1.1 christos else
386 1.1 christos {
387 1.1 christos if (p_l + ovt > z - p_h)
388 1.1 christos return s * huge * huge; /* overflow */
389 1.1 christos }
390 1.1 christos }
391 1.1 christos else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
392 1.1 christos {
393 1.1 christos /* z < -16495 */
394 1.1 christos if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
395 1.1 christos o.parts32.lswlo)
396 1.1 christos != 0)
397 1.1 christos return s * tiny * tiny; /* underflow */
398 1.1 christos else
399 1.1 christos {
400 1.1 christos if (p_l <= z - p_h)
401 1.1 christos return s * tiny * tiny; /* underflow */
402 1.1 christos }
403 1.1 christos }
404 1.1 christos /* compute 2**(p_h+p_l) */
405 1.1 christos i = j & 0x7fffffff;
406 1.1 christos k = (i >> 16) - 0x3fff;
407 1.1 christos n = 0;
408 1.1 christos if (i > 0x3ffe0000)
409 1.1 christos { /* if |z| > 0.5, set n = [z+0.5] */
410 1.1 christos n = floorl (z + 0.5L);
411 1.1 christos t = n;
412 1.1 christos p_h -= t;
413 1.1 christos }
414 1.1 christos t = p_l + p_h;
415 1.1 christos o.value = t;
416 1.1 christos o.parts32.lswlo = 0;
417 1.1 christos o.parts32.lswhi &= 0xf8000000;
418 1.1 christos t = o.value;
419 1.1 christos u = t * lg2_h;
420 1.1 christos v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
421 1.1 christos z = u + v;
422 1.1 christos w = v - (z - u);
423 1.1 christos /* exp(z) */
424 1.1 christos t = z * z;
425 1.1 christos u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
426 1.1 christos v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
427 1.1 christos t1 = z - t * u / v;
428 1.1 christos r = (z * t1) / (t1 - two) - (w + z * w);
429 1.1 christos z = one - (r - z);
430 1.1 christos o.value = z;
431 1.1 christos j = o.parts32.mswhi;
432 1.1 christos j += (n << 16);
433 1.1 christos if ((j >> 16) <= 0)
434 1.1 christos z = scalbnl (z, n); /* subnormal output */
435 1.1 christos else
436 1.1 christos {
437 1.1 christos o.parts32.mswhi = j;
438 1.1 christos z = o.value;
439 1.1 christos }
440 1.1 christos return s * z;
441 1.1 christos }
442