Home | History | Annotate | Line # | Download | only in ld128
e_powl.c revision 1.1
      1  1.1  christos /*-
      2  1.1  christos  * ====================================================
      3  1.1  christos  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  1.1  christos  *
      5  1.1  christos  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  1.1  christos  * Permission to use, copy, modify, and distribute this
      7  1.1  christos  * software is freely granted, provided that this notice
      8  1.1  christos  * is preserved.
      9  1.1  christos  * ====================================================
     10  1.1  christos  */
     11  1.1  christos 
     12  1.1  christos /*
     13  1.1  christos  * Copyright (c) 2008 Stephen L. Moshier <steve (at) moshier.net>
     14  1.1  christos  *
     15  1.1  christos  * Permission to use, copy, modify, and distribute this software for any
     16  1.1  christos  * purpose with or without fee is hereby granted, provided that the above
     17  1.1  christos  * copyright notice and this permission notice appear in all copies.
     18  1.1  christos  *
     19  1.1  christos  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     20  1.1  christos  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     21  1.1  christos  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     22  1.1  christos  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     23  1.1  christos  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     24  1.1  christos  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     25  1.1  christos  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     26  1.1  christos  */
     27  1.1  christos 
     28  1.1  christos /* powl(x,y) return x**y
     29  1.1  christos  *
     30  1.1  christos  *		      n
     31  1.1  christos  * Method:  Let x =  2   * (1+f)
     32  1.1  christos  *	1. Compute and return log2(x) in two pieces:
     33  1.1  christos  *		log2(x) = w1 + w2,
     34  1.1  christos  *	   where w1 has 113-53 = 60 bit trailing zeros.
     35  1.1  christos  *	2. Perform y*log2(x) = n+y' by simulating multi-precision
     36  1.1  christos  *	   arithmetic, where |y'|<=0.5.
     37  1.1  christos  *	3. Return x**y = 2**n*exp(y'*log2)
     38  1.1  christos  *
     39  1.1  christos  * Special cases:
     40  1.1  christos  *	1.  (anything) ** 0  is 1
     41  1.1  christos  *	2.  (anything) ** 1  is itself
     42  1.1  christos  *	3.  (anything) ** NAN is NAN
     43  1.1  christos  *	4.  NAN ** (anything except 0) is NAN
     44  1.1  christos  *	5.  +-(|x| > 1) **  +INF is +INF
     45  1.1  christos  *	6.  +-(|x| > 1) **  -INF is +0
     46  1.1  christos  *	7.  +-(|x| < 1) **  +INF is +0
     47  1.1  christos  *	8.  +-(|x| < 1) **  -INF is +INF
     48  1.1  christos  *	9.  +-1         ** +-INF is NAN
     49  1.1  christos  *	10. +0 ** (+anything except 0, NAN)               is +0
     50  1.1  christos  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
     51  1.1  christos  *	12. +0 ** (-anything except 0, NAN)               is +INF
     52  1.1  christos  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
     53  1.1  christos  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
     54  1.1  christos  *	15. +INF ** (+anything except 0,NAN) is +INF
     55  1.1  christos  *	16. +INF ** (-anything except 0,NAN) is +0
     56  1.1  christos  *	17. -INF ** (anything)  = -0 ** (-anything)
     57  1.1  christos  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
     58  1.1  christos  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
     59  1.1  christos  *
     60  1.1  christos  */
     61  1.1  christos 
     62  1.1  christos #include <sys/cdefs.h>
     63  1.1  christos #include <float.h>
     64  1.1  christos #include <math.h>
     65  1.1  christos 
     66  1.1  christos #include "math_private.h"
     67  1.1  christos 
     68  1.1  christos static const long double bp[] = {
     69  1.1  christos   1.0L,
     70  1.1  christos   1.5L,
     71  1.1  christos };
     72  1.1  christos 
     73  1.1  christos /* log_2(1.5) */
     74  1.1  christos static const long double dp_h[] = {
     75  1.1  christos   0.0,
     76  1.1  christos   5.8496250072115607565592654282227158546448E-1L
     77  1.1  christos };
     78  1.1  christos 
     79  1.1  christos /* Low part of log_2(1.5) */
     80  1.1  christos static const long double dp_l[] = {
     81  1.1  christos   0.0,
     82  1.1  christos   1.0579781240112554492329533686862998106046E-16L
     83  1.1  christos };
     84  1.1  christos 
     85  1.1  christos static const long double zero = 0.0L,
     86  1.1  christos   one = 1.0L,
     87  1.1  christos   two = 2.0L,
     88  1.1  christos   two113 = 1.0384593717069655257060992658440192E34L,
     89  1.1  christos   huge = 1.0e3000L,
     90  1.1  christos   tiny = 1.0e-3000L;
     91  1.1  christos 
     92  1.1  christos /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
     93  1.1  christos    z = (x-1)/(x+1)
     94  1.1  christos    1 <= x <= 1.25
     95  1.1  christos    Peak relative error 2.3e-37 */
     96  1.1  christos static const long double LN[] =
     97  1.1  christos {
     98  1.1  christos  -3.0779177200290054398792536829702930623200E1L,
     99  1.1  christos   6.5135778082209159921251824580292116201640E1L,
    100  1.1  christos  -4.6312921812152436921591152809994014413540E1L,
    101  1.1  christos   1.2510208195629420304615674658258363295208E1L,
    102  1.1  christos  -9.9266909031921425609179910128531667336670E-1L
    103  1.1  christos };
    104  1.1  christos static const long double LD[] =
    105  1.1  christos {
    106  1.1  christos  -5.129862866715009066465422805058933131960E1L,
    107  1.1  christos   1.452015077564081884387441590064272782044E2L,
    108  1.1  christos  -1.524043275549860505277434040464085593165E2L,
    109  1.1  christos   7.236063513651544224319663428634139768808E1L,
    110  1.1  christos  -1.494198912340228235853027849917095580053E1L
    111  1.1  christos   /* 1.0E0 */
    112  1.1  christos };
    113  1.1  christos 
    114  1.1  christos /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
    115  1.1  christos    0 <= x <= 0.5
    116  1.1  christos    Peak relative error 5.7e-38  */
    117  1.1  christos static const long double PN[] =
    118  1.1  christos {
    119  1.1  christos   5.081801691915377692446852383385968225675E8L,
    120  1.1  christos   9.360895299872484512023336636427675327355E6L,
    121  1.1  christos   4.213701282274196030811629773097579432957E4L,
    122  1.1  christos   5.201006511142748908655720086041570288182E1L,
    123  1.1  christos   9.088368420359444263703202925095675982530E-3L,
    124  1.1  christos };
    125  1.1  christos static const long double PD[] =
    126  1.1  christos {
    127  1.1  christos   3.049081015149226615468111430031590411682E9L,
    128  1.1  christos   1.069833887183886839966085436512368982758E8L,
    129  1.1  christos   8.259257717868875207333991924545445705394E5L,
    130  1.1  christos   1.872583833284143212651746812884298360922E3L,
    131  1.1  christos   /* 1.0E0 */
    132  1.1  christos };
    133  1.1  christos 
    134  1.1  christos static const long double
    135  1.1  christos   /* ln 2 */
    136  1.1  christos   lg2 = 6.9314718055994530941723212145817656807550E-1L,
    137  1.1  christos   lg2_h = 6.9314718055994528622676398299518041312695E-1L,
    138  1.1  christos   lg2_l = 2.3190468138462996154948554638754786504121E-17L,
    139  1.1  christos   ovt = 8.0085662595372944372e-0017L,
    140  1.1  christos   /* 2/(3*log(2)) */
    141  1.1  christos   cp = 9.6179669392597560490661645400126142495110E-1L,
    142  1.1  christos   cp_h = 9.6179669392597555432899980587535537779331E-1L,
    143  1.1  christos   cp_l = 5.0577616648125906047157785230014751039424E-17L;
    144  1.1  christos 
    145  1.1  christos long double
    146  1.1  christos powl(long double x, long double y)
    147  1.1  christos {
    148  1.1  christos   long double z, ax, z_h, z_l, p_h, p_l;
    149  1.1  christos   long double yy1, t1, t2, r, s, t, u, v, w;
    150  1.1  christos   long double s2, s_h, s_l, t_h, t_l;
    151  1.1  christos   int32_t i, j, k, yisint, n;
    152  1.1  christos   u_int32_t ix, iy;
    153  1.1  christos   int32_t hx, hy;
    154  1.1  christos   ieee_quad_shape_type o, p, q;
    155  1.1  christos 
    156  1.1  christos   p.value = x;
    157  1.1  christos   hx = p.parts32.mswhi;
    158  1.1  christos   ix = hx & 0x7fffffff;
    159  1.1  christos 
    160  1.1  christos   q.value = y;
    161  1.1  christos   hy = q.parts32.mswhi;
    162  1.1  christos   iy = hy & 0x7fffffff;
    163  1.1  christos 
    164  1.1  christos 
    165  1.1  christos   /* y==zero: x**0 = 1 */
    166  1.1  christos   if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
    167  1.1  christos     return one;
    168  1.1  christos 
    169  1.1  christos   /* 1.0**y = 1; -1.0**+-Inf = 1 */
    170  1.1  christos   if (x == one)
    171  1.1  christos     return one;
    172  1.1  christos   if (x == -1.0L && iy == 0x7fff0000
    173  1.1  christos       && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
    174  1.1  christos     return one;
    175  1.1  christos 
    176  1.1  christos   /* +-NaN return x+y */
    177  1.1  christos   if ((ix > 0x7fff0000)
    178  1.1  christos       || ((ix == 0x7fff0000)
    179  1.1  christos 	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
    180  1.1  christos       || (iy > 0x7fff0000)
    181  1.1  christos       || ((iy == 0x7fff0000)
    182  1.1  christos 	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
    183  1.1  christos     return nan_mix(x, y);
    184  1.1  christos 
    185  1.1  christos   /* determine if y is an odd int when x < 0
    186  1.1  christos    * yisint = 0       ... y is not an integer
    187  1.1  christos    * yisint = 1       ... y is an odd int
    188  1.1  christos    * yisint = 2       ... y is an even int
    189  1.1  christos    */
    190  1.1  christos   yisint = 0;
    191  1.1  christos   if (hx < 0)
    192  1.1  christos     {
    193  1.1  christos       if (iy >= 0x40700000)	/* 2^113 */
    194  1.1  christos 	yisint = 2;		/* even integer y */
    195  1.1  christos       else if (iy >= 0x3fff0000)	/* 1.0 */
    196  1.1  christos 	{
    197  1.1  christos 	  if (floorl (y) == y)
    198  1.1  christos 	    {
    199  1.1  christos 	      z = 0.5 * y;
    200  1.1  christos 	      if (floorl (z) == z)
    201  1.1  christos 		yisint = 2;
    202  1.1  christos 	      else
    203  1.1  christos 		yisint = 1;
    204  1.1  christos 	    }
    205  1.1  christos 	}
    206  1.1  christos     }
    207  1.1  christos 
    208  1.1  christos   /* special value of y */
    209  1.1  christos   if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
    210  1.1  christos     {
    211  1.1  christos       if (iy == 0x7fff0000)	/* y is +-inf */
    212  1.1  christos 	{
    213  1.1  christos 	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
    214  1.1  christos 	    p.parts32.lswlo) == 0)
    215  1.1  christos 	    return y - y;	/* +-1**inf is NaN */
    216  1.1  christos 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
    217  1.1  christos 	    return (hy >= 0) ? y : zero;
    218  1.1  christos 	  else			/* (|x|<1)**-,+inf = inf,0 */
    219  1.1  christos 	    return (hy < 0) ? -y : zero;
    220  1.1  christos 	}
    221  1.1  christos       if (iy == 0x3fff0000)
    222  1.1  christos 	{			/* y is  +-1 */
    223  1.1  christos 	  if (hy < 0)
    224  1.1  christos 	    return one / x;
    225  1.1  christos 	  else
    226  1.1  christos 	    return x;
    227  1.1  christos 	}
    228  1.1  christos       if (hy == 0x40000000)
    229  1.1  christos 	return x * x;		/* y is  2 */
    230  1.1  christos       if (hy == 0x3ffe0000)
    231  1.1  christos 	{			/* y is  0.5 */
    232  1.1  christos 	  if (hx >= 0)		/* x >= +0 */
    233  1.1  christos 	    return sqrtl (x);
    234  1.1  christos 	}
    235  1.1  christos     }
    236  1.1  christos 
    237  1.1  christos   ax = fabsl (x);
    238  1.1  christos   /* special value of x */
    239  1.1  christos   if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
    240  1.1  christos     {
    241  1.1  christos       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
    242  1.1  christos 	{
    243  1.1  christos 	  z = ax;		/*x is +-0,+-inf,+-1 */
    244  1.1  christos 	  if (hy < 0)
    245  1.1  christos 	    z = one / z;	/* z = (1/|x|) */
    246  1.1  christos 	  if (hx < 0)
    247  1.1  christos 	    {
    248  1.1  christos 	      if (((ix - 0x3fff0000) | yisint) == 0)
    249  1.1  christos 		{
    250  1.1  christos 		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
    251  1.1  christos 		}
    252  1.1  christos 	      else if (yisint == 1)
    253  1.1  christos 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
    254  1.1  christos 	    }
    255  1.1  christos 	  return z;
    256  1.1  christos 	}
    257  1.1  christos     }
    258  1.1  christos 
    259  1.1  christos   /* (x<0)**(non-int) is NaN */
    260  1.1  christos   if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
    261  1.1  christos     return (x - x) / (x - x);
    262  1.1  christos 
    263  1.1  christos   /* |y| is huge.
    264  1.1  christos      2^-16495 = 1/2 of smallest representable value.
    265  1.1  christos      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
    266  1.1  christos   if (iy > 0x401d654b)
    267  1.1  christos     {
    268  1.1  christos       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
    269  1.1  christos       if (iy > 0x407d654b)
    270  1.1  christos 	{
    271  1.1  christos 	  if (ix <= 0x3ffeffff)
    272  1.1  christos 	    return (hy < 0) ? huge * huge : tiny * tiny;
    273  1.1  christos 	  if (ix >= 0x3fff0000)
    274  1.1  christos 	    return (hy > 0) ? huge * huge : tiny * tiny;
    275  1.1  christos 	}
    276  1.1  christos       /* over/underflow if x is not close to one */
    277  1.1  christos       if (ix < 0x3ffeffff)
    278  1.1  christos 	return (hy < 0) ? huge * huge : tiny * tiny;
    279  1.1  christos       if (ix > 0x3fff0000)
    280  1.1  christos 	return (hy > 0) ? huge * huge : tiny * tiny;
    281  1.1  christos     }
    282  1.1  christos 
    283  1.1  christos   n = 0;
    284  1.1  christos   /* take care subnormal number */
    285  1.1  christos   if (ix < 0x00010000)
    286  1.1  christos     {
    287  1.1  christos       ax *= two113;
    288  1.1  christos       n -= 113;
    289  1.1  christos       o.value = ax;
    290  1.1  christos       ix = o.parts32.mswhi;
    291  1.1  christos     }
    292  1.1  christos   n += ((ix) >> 16) - 0x3fff;
    293  1.1  christos   j = ix & 0x0000ffff;
    294  1.1  christos   /* determine interval */
    295  1.1  christos   ix = j | 0x3fff0000;		/* normalize ix */
    296  1.1  christos   if (j <= 0x3988)
    297  1.1  christos     k = 0;			/* |x|<sqrt(3/2) */
    298  1.1  christos   else if (j < 0xbb67)
    299  1.1  christos     k = 1;			/* |x|<sqrt(3)   */
    300  1.1  christos   else
    301  1.1  christos     {
    302  1.1  christos       k = 0;
    303  1.1  christos       n += 1;
    304  1.1  christos       ix -= 0x00010000;
    305  1.1  christos     }
    306  1.1  christos 
    307  1.1  christos   o.value = ax;
    308  1.1  christos   o.parts32.mswhi = ix;
    309  1.1  christos   ax = o.value;
    310  1.1  christos 
    311  1.1  christos   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
    312  1.1  christos   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
    313  1.1  christos   v = one / (ax + bp[k]);
    314  1.1  christos   s = u * v;
    315  1.1  christos   s_h = s;
    316  1.1  christos 
    317  1.1  christos   o.value = s_h;
    318  1.1  christos   o.parts32.lswlo = 0;
    319  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    320  1.1  christos   s_h = o.value;
    321  1.1  christos   /* t_h=ax+bp[k] High */
    322  1.1  christos   t_h = ax + bp[k];
    323  1.1  christos   o.value = t_h;
    324  1.1  christos   o.parts32.lswlo = 0;
    325  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    326  1.1  christos   t_h = o.value;
    327  1.1  christos   t_l = ax - (t_h - bp[k]);
    328  1.1  christos   s_l = v * ((u - s_h * t_h) - s_h * t_l);
    329  1.1  christos   /* compute log(ax) */
    330  1.1  christos   s2 = s * s;
    331  1.1  christos   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
    332  1.1  christos   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
    333  1.1  christos   r = s2 * s2 * u / v;
    334  1.1  christos   r += s_l * (s_h + s);
    335  1.1  christos   s2 = s_h * s_h;
    336  1.1  christos   t_h = 3.0 + s2 + r;
    337  1.1  christos   o.value = t_h;
    338  1.1  christos   o.parts32.lswlo = 0;
    339  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    340  1.1  christos   t_h = o.value;
    341  1.1  christos   t_l = r - ((t_h - 3.0) - s2);
    342  1.1  christos   /* u+v = s*(1+...) */
    343  1.1  christos   u = s_h * t_h;
    344  1.1  christos   v = s_l * t_h + t_l * s;
    345  1.1  christos   /* 2/(3log2)*(s+...) */
    346  1.1  christos   p_h = u + v;
    347  1.1  christos   o.value = p_h;
    348  1.1  christos   o.parts32.lswlo = 0;
    349  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    350  1.1  christos   p_h = o.value;
    351  1.1  christos   p_l = v - (p_h - u);
    352  1.1  christos   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
    353  1.1  christos   z_l = cp_l * p_h + p_l * cp + dp_l[k];
    354  1.1  christos   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
    355  1.1  christos   t = (long double) n;
    356  1.1  christos   t1 = (((z_h + z_l) + dp_h[k]) + t);
    357  1.1  christos   o.value = t1;
    358  1.1  christos   o.parts32.lswlo = 0;
    359  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    360  1.1  christos   t1 = o.value;
    361  1.1  christos   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
    362  1.1  christos 
    363  1.1  christos   /* s (sign of result -ve**odd) = -1 else = 1 */
    364  1.1  christos   s = one;
    365  1.1  christos   if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
    366  1.1  christos     s = -one;			/* (-ve)**(odd int) */
    367  1.1  christos 
    368  1.1  christos   /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
    369  1.1  christos   yy1 = y;
    370  1.1  christos   o.value = yy1;
    371  1.1  christos   o.parts32.lswlo = 0;
    372  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    373  1.1  christos   yy1 = o.value;
    374  1.1  christos   p_l = (y - yy1) * t1 + y * t2;
    375  1.1  christos   p_h = yy1 * t1;
    376  1.1  christos   z = p_l + p_h;
    377  1.1  christos   o.value = z;
    378  1.1  christos   j = o.parts32.mswhi;
    379  1.1  christos   if (j >= 0x400d0000) /* z >= 16384 */
    380  1.1  christos     {
    381  1.1  christos       /* if z > 16384 */
    382  1.1  christos       if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
    383  1.1  christos 	o.parts32.lswlo) != 0)
    384  1.1  christos 	return s * huge * huge;	/* overflow */
    385  1.1  christos       else
    386  1.1  christos 	{
    387  1.1  christos 	  if (p_l + ovt > z - p_h)
    388  1.1  christos 	    return s * huge * huge;	/* overflow */
    389  1.1  christos 	}
    390  1.1  christos     }
    391  1.1  christos   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
    392  1.1  christos     {
    393  1.1  christos       /* z < -16495 */
    394  1.1  christos       if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
    395  1.1  christos 	o.parts32.lswlo)
    396  1.1  christos 	  != 0)
    397  1.1  christos 	return s * tiny * tiny;	/* underflow */
    398  1.1  christos       else
    399  1.1  christos 	{
    400  1.1  christos 	  if (p_l <= z - p_h)
    401  1.1  christos 	    return s * tiny * tiny;	/* underflow */
    402  1.1  christos 	}
    403  1.1  christos     }
    404  1.1  christos   /* compute 2**(p_h+p_l) */
    405  1.1  christos   i = j & 0x7fffffff;
    406  1.1  christos   k = (i >> 16) - 0x3fff;
    407  1.1  christos   n = 0;
    408  1.1  christos   if (i > 0x3ffe0000)
    409  1.1  christos     {				/* if |z| > 0.5, set n = [z+0.5] */
    410  1.1  christos       n = floorl (z + 0.5L);
    411  1.1  christos       t = n;
    412  1.1  christos       p_h -= t;
    413  1.1  christos     }
    414  1.1  christos   t = p_l + p_h;
    415  1.1  christos   o.value = t;
    416  1.1  christos   o.parts32.lswlo = 0;
    417  1.1  christos   o.parts32.lswhi &= 0xf8000000;
    418  1.1  christos   t = o.value;
    419  1.1  christos   u = t * lg2_h;
    420  1.1  christos   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
    421  1.1  christos   z = u + v;
    422  1.1  christos   w = v - (z - u);
    423  1.1  christos   /*  exp(z) */
    424  1.1  christos   t = z * z;
    425  1.1  christos   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
    426  1.1  christos   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
    427  1.1  christos   t1 = z - t * u / v;
    428  1.1  christos   r = (z * t1) / (t1 - two) - (w + z * w);
    429  1.1  christos   z = one - (r - z);
    430  1.1  christos   o.value = z;
    431  1.1  christos   j = o.parts32.mswhi;
    432  1.1  christos   j += (n << 16);
    433  1.1  christos   if ((j >> 16) <= 0)
    434  1.1  christos     z = scalbnl (z, n);	/* subnormal output */
    435  1.1  christos   else
    436  1.1  christos     {
    437  1.1  christos       o.parts32.mswhi = j;
    438  1.1  christos       z = o.value;
    439  1.1  christos     }
    440  1.1  christos   return s * z;
    441  1.1  christos }
    442