k_tanl.c revision 1.1 1 1.1 christos /* From: @(#)k_tan.c 1.5 04/04/22 SMI */
2 1.1 christos
3 1.1 christos /*
4 1.1 christos * ====================================================
5 1.1 christos * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
6 1.1 christos * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
7 1.1 christos *
8 1.1 christos * Permission to use, copy, modify, and distribute this
9 1.1 christos * software is freely granted, provided that this notice
10 1.1 christos * is preserved.
11 1.1 christos * ====================================================
12 1.1 christos */
13 1.1 christos
14 1.1 christos #include <sys/cdefs.h>
15 1.1 christos /*
16 1.1 christos * ld128 version of k_tan.c. See ../src/k_tan.c for most comments.
17 1.1 christos */
18 1.1 christos
19 1.1 christos #include "math.h"
20 1.1 christos #include "math_private.h"
21 1.1 christos
22 1.1 christos /*
23 1.1 christos * Domain [-0.67434, 0.67434], range ~[-3.37e-36, 1.982e-37]
24 1.1 christos * |tan(x)/x - t(x)| < 2**-117.8 (XXX should be ~1e-37)
25 1.1 christos *
26 1.1 christos * See ../ld80/k_cosl.c for more details about the polynomial.
27 1.1 christos */
28 1.1 christos static const long double
29 1.1 christos T3 = 0x1.5555555555555555555555555553p-2L,
30 1.1 christos T5 = 0x1.1111111111111111111111111eb5p-3L,
31 1.1 christos T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
32 1.1 christos T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
33 1.1 christos T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
34 1.1 christos T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
35 1.1 christos T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
36 1.1 christos T17 = 0x1.355824803674477dfcf726649efep-11L,
37 1.1 christos T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
38 1.1 christos T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
39 1.1 christos T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
40 1.1 christos T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
41 1.1 christos T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
42 1.1 christos T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
43 1.1 christos T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
44 1.1 christos T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
45 1.1 christos T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
46 1.1 christos T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
47 1.1 christos pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
48 1.1 christos pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
49 1.1 christos
50 1.1 christos static const double
51 1.1 christos T39 = 0.000000028443389121318352, /* 0x1e8a7592977938.0p-78 */
52 1.1 christos T41 = 0.000000011981013102001973, /* 0x19baa1b1223219.0p-79 */
53 1.1 christos T43 = 0.0000000038303578044958070, /* 0x107385dfb24529.0p-80 */
54 1.1 christos T45 = 0.0000000034664378216909893, /* 0x1dc6c702a05262.0p-81 */
55 1.1 christos T47 = -0.0000000015090641701997785, /* -0x19ecef3569ebb6.0p-82 */
56 1.1 christos T49 = 0.0000000029449552300483952, /* 0x194c0668da786a.0p-81 */
57 1.1 christos T51 = -0.0000000022006995706097711, /* -0x12e763b8845268.0p-81 */
58 1.1 christos T53 = 0.0000000015468200913196612, /* 0x1a92fc98c29554.0p-82 */
59 1.1 christos T55 = -0.00000000061311613386849674, /* -0x151106cbc779a9.0p-83 */
60 1.1 christos T57 = 1.4912469681508012e-10; /* 0x147edbdba6f43a.0p-85 */
61 1.1 christos
62 1.1 christos long double
63 1.1 christos __kernel_tanl(long double x, long double y, int iy) {
64 1.1 christos long double z, r, v, w, s;
65 1.1 christos long double osign;
66 1.1 christos int i;
67 1.1 christos
68 1.1 christos iy = (iy == 1 ? -1 : 1); /* XXX recover original interface */
69 1.1 christos osign = (x >= 0 ? 1.0 : -1.0); /* XXX slow, probably wrong for -0 */
70 1.1 christos if (fabsl(x) >= 0.67434) {
71 1.1 christos if (x < 0) {
72 1.1 christos x = -x;
73 1.1 christos y = -y;
74 1.1 christos }
75 1.1 christos z = pio4 - x;
76 1.1 christos w = pio4lo - y;
77 1.1 christos x = z + w;
78 1.1 christos y = 0.0;
79 1.1 christos i = 1;
80 1.1 christos } else
81 1.1 christos i = 0;
82 1.1 christos z = x * x;
83 1.1 christos w = z * z;
84 1.1 christos r = T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 +
85 1.1 christos w * (T25 + w * (T29 + w * (T33 +
86 1.1 christos w * (T37 + w * (T41 + w * (T45 + w * (T49 + w * (T53 +
87 1.1 christos w * T57))))))))))));
88 1.1 christos v = z * (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 +
89 1.1 christos w * (T27 + w * (T31 + w * (T35 +
90 1.1 christos w * (T39 + w * (T43 + w * (T47 + w * (T51 + w * T55))))))))))));
91 1.1 christos s = z * x;
92 1.1 christos r = y + z * (s * (r + v) + y);
93 1.1 christos r += T3 * s;
94 1.1 christos w = x + r;
95 1.1 christos if (i == 1) {
96 1.1 christos v = (long double) iy;
97 1.1 christos return osign *
98 1.1 christos (v - 2.0 * (x - (w * w / (w + v) - r)));
99 1.1 christos }
100 1.1 christos if (iy == 1)
101 1.1 christos return w;
102 1.1 christos else {
103 1.1 christos /*
104 1.1 christos * if allow error up to 2 ulp, simply return
105 1.1 christos * -1.0 / (x+r) here
106 1.1 christos */
107 1.1 christos /* compute -1.0 / (x+r) accurately */
108 1.1 christos long double a, t;
109 1.1 christos z = w;
110 1.1 christos z = z + 0x1p32 - 0x1p32;
111 1.1 christos v = r - (z - x); /* z+v = r+x */
112 1.1 christos t = a = -1.0 / w; /* a = -1.0/w */
113 1.1 christos t = t + 0x1p32 - 0x1p32;
114 1.1 christos s = 1.0 + t * z;
115 1.1 christos return t + a * (s + t * v);
116 1.1 christos }
117 1.1 christos }
118