Home | History | Annotate | Line # | Download | only in ld128
s_exp2l.c revision 1.1
      1  1.1  christos /*-
      2  1.1  christos  * SPDX-License-Identifier: BSD-2-Clause
      3  1.1  christos  *
      4  1.1  christos  * Copyright (c) 2005-2008 David Schultz <das (at) FreeBSD.ORG>
      5  1.1  christos  * All rights reserved.
      6  1.1  christos  *
      7  1.1  christos  * Redistribution and use in source and binary forms, with or without
      8  1.1  christos  * modification, are permitted provided that the following conditions
      9  1.1  christos  * are met:
     10  1.1  christos  * 1. Redistributions of source code must retain the above copyright
     11  1.1  christos  *    notice, this list of conditions and the following disclaimer.
     12  1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  christos  *    documentation and/or other materials provided with the distribution.
     15  1.1  christos  *
     16  1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.1  christos  * SUCH DAMAGE.
     27  1.1  christos  */
     28  1.1  christos 
     29  1.1  christos #include <sys/cdefs.h>
     30  1.1  christos #include <float.h>
     31  1.1  christos #include <stdint.h>
     32  1.1  christos 
     33  1.1  christos #include "math.h"
     34  1.1  christos #include "math_private.h"
     35  1.1  christos 
     36  1.1  christos #define	TBLBITS	7
     37  1.1  christos #define	TBLSIZE	(1 << TBLBITS)
     38  1.1  christos 
     39  1.1  christos #define	BIAS	(LDBL_MAX_EXP - 1)
     40  1.1  christos #define	EXPMASK	(BIAS + LDBL_MAX_EXP)
     41  1.1  christos 
     42  1.1  christos static volatile long double
     43  1.1  christos     huge      = 0x1p10000L,
     44  1.1  christos     twom10000 = 0x1p-10000L;
     45  1.1  christos 
     46  1.1  christos static const long double
     47  1.1  christos     P1        = 0x1.62e42fefa39ef35793c7673007e6p-1L,
     48  1.1  christos     P2	      = 0x1.ebfbdff82c58ea86f16b06ec9736p-3L,
     49  1.1  christos     P3        = 0x1.c6b08d704a0bf8b33a762bad3459p-5L,
     50  1.1  christos     P4        = 0x1.3b2ab6fba4e7729ccbbe0b4f3fc2p-7L,
     51  1.1  christos     P5        = 0x1.5d87fe78a67311071dee13fd11d9p-10L,
     52  1.1  christos     P6        = 0x1.430912f86c7876f4b663b23c5fe5p-13L;
     53  1.1  christos 
     54  1.1  christos static const double
     55  1.1  christos     P7        = 0x1.ffcbfc588b041p-17,
     56  1.1  christos     P8        = 0x1.62c0223a5c7c7p-20,
     57  1.1  christos     P9        = 0x1.b52541ff59713p-24,
     58  1.1  christos     P10       = 0x1.e4cf56a391e22p-28,
     59  1.1  christos     redux     = 0x1.8p112 / TBLSIZE;
     60  1.1  christos 
     61  1.1  christos static const long double tbl[TBLSIZE] = {
     62  1.1  christos 	0x1.6a09e667f3bcc908b2fb1366dfeap-1L,
     63  1.1  christos 	0x1.6c012750bdabeed76a99800f4edep-1L,
     64  1.1  christos 	0x1.6dfb23c651a2ef220e2cbe1bc0d4p-1L,
     65  1.1  christos 	0x1.6ff7df9519483cf87e1b4f3e1e98p-1L,
     66  1.1  christos 	0x1.71f75e8ec5f73dd2370f2ef0b148p-1L,
     67  1.1  christos 	0x1.73f9a48a58173bd5c9a4e68ab074p-1L,
     68  1.1  christos 	0x1.75feb564267c8bf6e9aa33a489a8p-1L,
     69  1.1  christos 	0x1.780694fde5d3f619ae02808592a4p-1L,
     70  1.1  christos 	0x1.7a11473eb0186d7d51023f6ccb1ap-1L,
     71  1.1  christos 	0x1.7c1ed0130c1327c49334459378dep-1L,
     72  1.1  christos 	0x1.7e2f336cf4e62105d02ba1579756p-1L,
     73  1.1  christos 	0x1.80427543e1a11b60de67649a3842p-1L,
     74  1.1  christos 	0x1.82589994cce128acf88afab34928p-1L,
     75  1.1  christos 	0x1.8471a4623c7acce52f6b97c6444cp-1L,
     76  1.1  christos 	0x1.868d99b4492ec80e41d90ac2556ap-1L,
     77  1.1  christos 	0x1.88ac7d98a669966530bcdf2d4cc0p-1L,
     78  1.1  christos 	0x1.8ace5422aa0db5ba7c55a192c648p-1L,
     79  1.1  christos 	0x1.8cf3216b5448bef2aa1cd161c57ap-1L,
     80  1.1  christos 	0x1.8f1ae991577362b982745c72eddap-1L,
     81  1.1  christos 	0x1.9145b0b91ffc588a61b469f6b6a0p-1L,
     82  1.1  christos 	0x1.93737b0cdc5e4f4501c3f2540ae8p-1L,
     83  1.1  christos 	0x1.95a44cbc8520ee9b483695a0e7fep-1L,
     84  1.1  christos 	0x1.97d829fde4e4f8b9e920f91e8eb6p-1L,
     85  1.1  christos 	0x1.9a0f170ca07b9ba3109b8c467844p-1L,
     86  1.1  christos 	0x1.9c49182a3f0901c7c46b071f28dep-1L,
     87  1.1  christos 	0x1.9e86319e323231824ca78e64c462p-1L,
     88  1.1  christos 	0x1.a0c667b5de564b29ada8b8cabbacp-1L,
     89  1.1  christos 	0x1.a309bec4a2d3358c171f770db1f4p-1L,
     90  1.1  christos 	0x1.a5503b23e255c8b424491caf88ccp-1L,
     91  1.1  christos 	0x1.a799e1330b3586f2dfb2b158f31ep-1L,
     92  1.1  christos 	0x1.a9e6b5579fdbf43eb243bdff53a2p-1L,
     93  1.1  christos 	0x1.ac36bbfd3f379c0db966a3126988p-1L,
     94  1.1  christos 	0x1.ae89f995ad3ad5e8734d17731c80p-1L,
     95  1.1  christos 	0x1.b0e07298db66590842acdfc6fb4ep-1L,
     96  1.1  christos 	0x1.b33a2b84f15faf6bfd0e7bd941b0p-1L,
     97  1.1  christos 	0x1.b59728de559398e3881111648738p-1L,
     98  1.1  christos 	0x1.b7f76f2fb5e46eaa7b081ab53ff6p-1L,
     99  1.1  christos 	0x1.ba5b030a10649840cb3c6af5b74cp-1L,
    100  1.1  christos 	0x1.bcc1e904bc1d2247ba0f45b3d06cp-1L,
    101  1.1  christos 	0x1.bf2c25bd71e088408d7025190cd0p-1L,
    102  1.1  christos 	0x1.c199bdd85529c2220cb12a0916bap-1L,
    103  1.1  christos 	0x1.c40ab5fffd07a6d14df820f17deap-1L,
    104  1.1  christos 	0x1.c67f12e57d14b4a2137fd20f2a26p-1L,
    105  1.1  christos 	0x1.c8f6d9406e7b511acbc48805c3f6p-1L,
    106  1.1  christos 	0x1.cb720dcef90691503cbd1e949d0ap-1L,
    107  1.1  christos 	0x1.cdf0b555dc3f9c44f8958fac4f12p-1L,
    108  1.1  christos 	0x1.d072d4a07897b8d0f22f21a13792p-1L,
    109  1.1  christos 	0x1.d2f87080d89f18ade123989ea50ep-1L,
    110  1.1  christos 	0x1.d5818dcfba48725da05aeb66dff8p-1L,
    111  1.1  christos 	0x1.d80e316c98397bb84f9d048807a0p-1L,
    112  1.1  christos 	0x1.da9e603db3285708c01a5b6d480cp-1L,
    113  1.1  christos 	0x1.dd321f301b4604b695de3c0630c0p-1L,
    114  1.1  christos 	0x1.dfc97337b9b5eb968cac39ed284cp-1L,
    115  1.1  christos 	0x1.e264614f5a128a12761fa17adc74p-1L,
    116  1.1  christos 	0x1.e502ee78b3ff6273d130153992d0p-1L,
    117  1.1  christos 	0x1.e7a51fbc74c834b548b2832378a4p-1L,
    118  1.1  christos 	0x1.ea4afa2a490d9858f73a18f5dab4p-1L,
    119  1.1  christos 	0x1.ecf482d8e67f08db0312fb949d50p-1L,
    120  1.1  christos 	0x1.efa1bee615a27771fd21a92dabb6p-1L,
    121  1.1  christos 	0x1.f252b376bba974e8696fc3638f24p-1L,
    122  1.1  christos 	0x1.f50765b6e4540674f84b762861a6p-1L,
    123  1.1  christos 	0x1.f7bfdad9cbe138913b4bfe72bd78p-1L,
    124  1.1  christos 	0x1.fa7c1819e90d82e90a7e74b26360p-1L,
    125  1.1  christos 	0x1.fd3c22b8f71f10975ba4b32bd006p-1L,
    126  1.1  christos 	0x1.0000000000000000000000000000p+0L,
    127  1.1  christos 	0x1.0163da9fb33356d84a66ae336e98p+0L,
    128  1.1  christos 	0x1.02c9a3e778060ee6f7caca4f7a18p+0L,
    129  1.1  christos 	0x1.04315e86e7f84bd738f9a20da442p+0L,
    130  1.1  christos 	0x1.059b0d31585743ae7c548eb68c6ap+0L,
    131  1.1  christos 	0x1.0706b29ddf6ddc6dc403a9d87b1ep+0L,
    132  1.1  christos 	0x1.0874518759bc808c35f25d942856p+0L,
    133  1.1  christos 	0x1.09e3ecac6f3834521e060c584d5cp+0L,
    134  1.1  christos 	0x1.0b5586cf9890f6298b92b7184200p+0L,
    135  1.1  christos 	0x1.0cc922b7247f7407b705b893dbdep+0L,
    136  1.1  christos 	0x1.0e3ec32d3d1a2020742e4f8af794p+0L,
    137  1.1  christos 	0x1.0fb66affed31af232091dd8a169ep+0L,
    138  1.1  christos 	0x1.11301d0125b50a4ebbf1aed9321cp+0L,
    139  1.1  christos 	0x1.12abdc06c31cbfb92bad324d6f84p+0L,
    140  1.1  christos 	0x1.1429aaea92ddfb34101943b2588ep+0L,
    141  1.1  christos 	0x1.15a98c8a58e512480d573dd562aep+0L,
    142  1.1  christos 	0x1.172b83c7d517adcdf7c8c50eb162p+0L,
    143  1.1  christos 	0x1.18af9388c8de9bbbf70b9a3c269cp+0L,
    144  1.1  christos 	0x1.1a35beb6fcb753cb698f692d2038p+0L,
    145  1.1  christos 	0x1.1bbe084045cd39ab1e72b442810ep+0L,
    146  1.1  christos 	0x1.1d4873168b9aa7805b8028990be8p+0L,
    147  1.1  christos 	0x1.1ed5022fcd91cb8819ff61121fbep+0L,
    148  1.1  christos 	0x1.2063b88628cd63b8eeb0295093f6p+0L,
    149  1.1  christos 	0x1.21f49917ddc962552fd29294bc20p+0L,
    150  1.1  christos 	0x1.2387a6e75623866c1fadb1c159c0p+0L,
    151  1.1  christos 	0x1.251ce4fb2a63f3582ab7de9e9562p+0L,
    152  1.1  christos 	0x1.26b4565e27cdd257a673281d3068p+0L,
    153  1.1  christos 	0x1.284dfe1f5638096cf15cf03c9fa0p+0L,
    154  1.1  christos 	0x1.29e9df51fdee12c25d15f5a25022p+0L,
    155  1.1  christos 	0x1.2b87fd0dad98ffddea46538fca24p+0L,
    156  1.1  christos 	0x1.2d285a6e4030b40091d536d0733ep+0L,
    157  1.1  christos 	0x1.2ecafa93e2f5611ca0f45d5239a4p+0L,
    158  1.1  christos 	0x1.306fe0a31b7152de8d5a463063bep+0L,
    159  1.1  christos 	0x1.32170fc4cd8313539cf1c3009330p+0L,
    160  1.1  christos 	0x1.33c08b26416ff4c9c8610d96680ep+0L,
    161  1.1  christos 	0x1.356c55f929ff0c94623476373be4p+0L,
    162  1.1  christos 	0x1.371a7373aa9caa7145502f45452ap+0L,
    163  1.1  christos 	0x1.38cae6d05d86585a9cb0d9bed530p+0L,
    164  1.1  christos 	0x1.3a7db34e59ff6ea1bc9299e0a1fep+0L,
    165  1.1  christos 	0x1.3c32dc313a8e484001f228b58cf0p+0L,
    166  1.1  christos 	0x1.3dea64c12342235b41223e13d7eep+0L,
    167  1.1  christos 	0x1.3fa4504ac801ba0bf701aa417b9cp+0L,
    168  1.1  christos 	0x1.4160a21f72e29f84325b8f3dbacap+0L,
    169  1.1  christos 	0x1.431f5d950a896dc704439410b628p+0L,
    170  1.1  christos 	0x1.44e086061892d03136f409df0724p+0L,
    171  1.1  christos 	0x1.46a41ed1d005772512f459229f0ap+0L,
    172  1.1  christos 	0x1.486a2b5c13cd013c1a3b69062f26p+0L,
    173  1.1  christos 	0x1.4a32af0d7d3de672d8bcf46f99b4p+0L,
    174  1.1  christos 	0x1.4bfdad5362a271d4397afec42e36p+0L,
    175  1.1  christos 	0x1.4dcb299fddd0d63b36ef1a9e19dep+0L,
    176  1.1  christos 	0x1.4f9b2769d2ca6ad33d8b69aa0b8cp+0L,
    177  1.1  christos 	0x1.516daa2cf6641c112f52c84d6066p+0L,
    178  1.1  christos 	0x1.5342b569d4f81df0a83c49d86bf4p+0L,
    179  1.1  christos 	0x1.551a4ca5d920ec52ec620243540cp+0L,
    180  1.1  christos 	0x1.56f4736b527da66ecb004764e61ep+0L,
    181  1.1  christos 	0x1.58d12d497c7fd252bc2b7343d554p+0L,
    182  1.1  christos 	0x1.5ab07dd48542958c93015191e9a8p+0L,
    183  1.1  christos 	0x1.5c9268a5946b701c4b1b81697ed4p+0L,
    184  1.1  christos 	0x1.5e76f15ad21486e9be4c20399d12p+0L,
    185  1.1  christos 	0x1.605e1b976dc08b076f592a487066p+0L,
    186  1.1  christos 	0x1.6247eb03a5584b1f0fa06fd2d9eap+0L,
    187  1.1  christos 	0x1.6434634ccc31fc76f8714c4ee122p+0L,
    188  1.1  christos 	0x1.66238825522249127d9e29b92ea2p+0L,
    189  1.1  christos 	0x1.68155d44ca973081c57227b9f69ep+0L,
    190  1.1  christos };
    191  1.1  christos 
    192  1.1  christos static const float eps[TBLSIZE] = {
    193  1.1  christos 	-0x1.5c50p-101,
    194  1.1  christos 	-0x1.5d00p-106,
    195  1.1  christos 	 0x1.8e90p-102,
    196  1.1  christos 	-0x1.5340p-103,
    197  1.1  christos 	 0x1.1bd0p-102,
    198  1.1  christos 	-0x1.4600p-105,
    199  1.1  christos 	-0x1.7a40p-104,
    200  1.1  christos 	 0x1.d590p-102,
    201  1.1  christos 	-0x1.d590p-101,
    202  1.1  christos 	 0x1.b100p-103,
    203  1.1  christos 	-0x1.0d80p-105,
    204  1.1  christos 	 0x1.6b00p-103,
    205  1.1  christos 	-0x1.9f00p-105,
    206  1.1  christos 	 0x1.c400p-103,
    207  1.1  christos 	 0x1.e120p-103,
    208  1.1  christos 	-0x1.c100p-104,
    209  1.1  christos 	-0x1.9d20p-103,
    210  1.1  christos 	 0x1.a800p-108,
    211  1.1  christos 	 0x1.4c00p-106,
    212  1.1  christos 	-0x1.9500p-106,
    213  1.1  christos 	 0x1.6900p-105,
    214  1.1  christos 	-0x1.29d0p-100,
    215  1.1  christos 	 0x1.4c60p-103,
    216  1.1  christos 	 0x1.13a0p-102,
    217  1.1  christos 	-0x1.5b60p-103,
    218  1.1  christos 	-0x1.1c40p-103,
    219  1.1  christos 	 0x1.db80p-102,
    220  1.1  christos 	 0x1.91a0p-102,
    221  1.1  christos 	 0x1.dc00p-105,
    222  1.1  christos 	 0x1.44c0p-104,
    223  1.1  christos 	 0x1.9710p-102,
    224  1.1  christos 	 0x1.8760p-103,
    225  1.1  christos 	-0x1.a720p-103,
    226  1.1  christos 	 0x1.ed20p-103,
    227  1.1  christos 	-0x1.49c0p-102,
    228  1.1  christos 	-0x1.e000p-111,
    229  1.1  christos 	 0x1.86a0p-103,
    230  1.1  christos 	 0x1.2b40p-103,
    231  1.1  christos 	-0x1.b400p-108,
    232  1.1  christos 	 0x1.1280p-99,
    233  1.1  christos 	-0x1.02d8p-102,
    234  1.1  christos 	-0x1.e3d0p-103,
    235  1.1  christos 	-0x1.b080p-105,
    236  1.1  christos 	-0x1.f100p-107,
    237  1.1  christos 	-0x1.16c0p-105,
    238  1.1  christos 	-0x1.1190p-103,
    239  1.1  christos 	-0x1.a7d2p-100,
    240  1.1  christos 	 0x1.3450p-103,
    241  1.1  christos 	-0x1.67c0p-105,
    242  1.1  christos 	 0x1.4b80p-104,
    243  1.1  christos 	-0x1.c4e0p-103,
    244  1.1  christos 	 0x1.6000p-108,
    245  1.1  christos 	-0x1.3f60p-105,
    246  1.1  christos 	 0x1.93f0p-104,
    247  1.1  christos 	 0x1.5fe0p-105,
    248  1.1  christos 	 0x1.6f80p-107,
    249  1.1  christos 	-0x1.7600p-106,
    250  1.1  christos 	 0x1.21e0p-106,
    251  1.1  christos 	-0x1.3a40p-106,
    252  1.1  christos 	-0x1.40c0p-104,
    253  1.1  christos 	-0x1.9860p-105,
    254  1.1  christos 	-0x1.5d40p-108,
    255  1.1  christos 	-0x1.1d70p-106,
    256  1.1  christos 	 0x1.2760p-105,
    257  1.1  christos 	 0x0.0000p+0,
    258  1.1  christos 	 0x1.21e2p-104,
    259  1.1  christos 	-0x1.9520p-108,
    260  1.1  christos 	-0x1.5720p-106,
    261  1.1  christos 	-0x1.4810p-106,
    262  1.1  christos 	-0x1.be00p-109,
    263  1.1  christos 	 0x1.0080p-105,
    264  1.1  christos 	-0x1.5780p-108,
    265  1.1  christos 	-0x1.d460p-105,
    266  1.1  christos 	-0x1.6140p-105,
    267  1.1  christos 	 0x1.4630p-104,
    268  1.1  christos 	 0x1.ad50p-103,
    269  1.1  christos 	 0x1.82e0p-105,
    270  1.1  christos 	 0x1.1d3cp-101,
    271  1.1  christos 	 0x1.6100p-107,
    272  1.1  christos 	 0x1.ec30p-104,
    273  1.1  christos 	 0x1.f200p-108,
    274  1.1  christos 	 0x1.0b40p-103,
    275  1.1  christos 	 0x1.3660p-102,
    276  1.1  christos 	 0x1.d9d0p-103,
    277  1.1  christos 	-0x1.02d0p-102,
    278  1.1  christos 	 0x1.b070p-103,
    279  1.1  christos 	 0x1.b9c0p-104,
    280  1.1  christos 	-0x1.01c0p-103,
    281  1.1  christos 	-0x1.dfe0p-103,
    282  1.1  christos 	 0x1.1b60p-104,
    283  1.1  christos 	-0x1.ae94p-101,
    284  1.1  christos 	-0x1.3340p-104,
    285  1.1  christos 	 0x1.b3d8p-102,
    286  1.1  christos 	-0x1.6e40p-105,
    287  1.1  christos 	-0x1.3670p-103,
    288  1.1  christos 	 0x1.c140p-104,
    289  1.1  christos 	 0x1.1840p-101,
    290  1.1  christos 	 0x1.1ab0p-102,
    291  1.1  christos 	-0x1.a400p-104,
    292  1.1  christos 	 0x1.1f00p-104,
    293  1.1  christos 	-0x1.7180p-103,
    294  1.1  christos 	 0x1.4ce0p-102,
    295  1.1  christos 	 0x1.9200p-107,
    296  1.1  christos 	-0x1.54c0p-103,
    297  1.1  christos 	 0x1.1b80p-105,
    298  1.1  christos 	-0x1.1828p-101,
    299  1.1  christos 	 0x1.5720p-102,
    300  1.1  christos 	-0x1.a060p-100,
    301  1.1  christos 	 0x1.9160p-102,
    302  1.1  christos 	 0x1.a280p-104,
    303  1.1  christos 	 0x1.3400p-107,
    304  1.1  christos 	 0x1.2b20p-102,
    305  1.1  christos 	 0x1.7800p-108,
    306  1.1  christos 	 0x1.cfd0p-101,
    307  1.1  christos 	 0x1.2ef0p-102,
    308  1.1  christos 	-0x1.2760p-99,
    309  1.1  christos 	 0x1.b380p-104,
    310  1.1  christos 	 0x1.0048p-101,
    311  1.1  christos 	-0x1.60b0p-102,
    312  1.1  christos 	 0x1.a1ccp-100,
    313  1.1  christos 	-0x1.a640p-104,
    314  1.1  christos 	-0x1.08a0p-101,
    315  1.1  christos 	 0x1.7e60p-102,
    316  1.1  christos 	 0x1.22c0p-103,
    317  1.1  christos 	-0x1.7200p-106,
    318  1.1  christos 	 0x1.f0f0p-102,
    319  1.1  christos 	 0x1.eb4ep-99,
    320  1.1  christos 	 0x1.c6e0p-103,
    321  1.1  christos };
    322  1.1  christos 
    323  1.1  christos /*
    324  1.1  christos  * exp2l(x): compute the base 2 exponential of x
    325  1.1  christos  *
    326  1.1  christos  * Accuracy: Peak error < 0.502 ulp.
    327  1.1  christos  *
    328  1.1  christos  * Method: (accurate tables)
    329  1.1  christos  *
    330  1.1  christos  *   Reduce x:
    331  1.1  christos  *     x = 2**k + y, for integer k and |y| <= 1/2.
    332  1.1  christos  *     Thus we have exp2(x) = 2**k * exp2(y).
    333  1.1  christos  *
    334  1.1  christos  *   Reduce y:
    335  1.1  christos  *     y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
    336  1.1  christos  *     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
    337  1.1  christos  *     with |z - eps[i]| <= 2**-8 + 2**-98 for the table used.
    338  1.1  christos  *
    339  1.1  christos  *   We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
    340  1.1  christos  *   a degree-10 minimax polynomial with maximum error under 2**-120.
    341  1.1  christos  *   The values in exp2t[] and eps[] are chosen such that
    342  1.1  christos  *   exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
    343  1.1  christos  *   that exp2t[i] is accurate to 2**-122.
    344  1.1  christos  *
    345  1.1  christos  *   Note that the range of i is +-TBLSIZE/2, so we actually index the tables
    346  1.1  christos  *   by i0 = i + TBLSIZE/2.
    347  1.1  christos  *
    348  1.1  christos  *   This method is due to Gal, with many details due to Gal and Bachelis:
    349  1.1  christos  *
    350  1.1  christos  *	Gal, S. and Bachelis, B.  An Accurate Elementary Mathematical Library
    351  1.1  christos  *	for the IEEE Floating Point Standard.  TOMS 17(1), 26-46 (1991).
    352  1.1  christos  */
    353  1.1  christos long double
    354  1.1  christos exp2l(long double x)
    355  1.1  christos {
    356  1.1  christos 	union ieee_ext_u u, v;
    357  1.1  christos 	long double r, t, twopk, twopkp10000, z;
    358  1.1  christos 	uint32_t hx, ix, i0;
    359  1.1  christos 	int k;
    360  1.1  christos 
    361  1.1  christos 	u.extu_ld = x;
    362  1.1  christos 
    363  1.1  christos 	/* Filter out exceptional cases. */
    364  1.1  christos 	hx = GET_EXPSIGN(&u);
    365  1.1  christos 	ix = hx & EXPMASK;
    366  1.1  christos 	if (ix >= BIAS + 14) {		/* |x| >= 16384 */
    367  1.1  christos 		if (ix == BIAS + LDBL_MAX_EXP) {
    368  1.1  christos 			if (u.extu_frach != 0
    369  1.1  christos 			    || u.extu_fracl != 0
    370  1.1  christos 			    || (hx & 0x8000) == 0)
    371  1.1  christos 				return (x + x);	/* x is NaN or +Inf */
    372  1.1  christos 			else
    373  1.1  christos 				return (0.0);	/* x is -Inf */
    374  1.1  christos 		}
    375  1.1  christos 		if (x >= 16384)
    376  1.1  christos 			return (huge * huge); /* overflow */
    377  1.1  christos 		if (x <= -16495)
    378  1.1  christos 			return (twom10000 * twom10000); /* underflow */
    379  1.1  christos 	} else if (ix <= BIAS - 115) {		/* |x| < 0x1p-115 */
    380  1.1  christos 		return (1.0 + x);
    381  1.1  christos 	}
    382  1.1  christos 
    383  1.1  christos 	/*
    384  1.1  christos 	 * Reduce x, computing z, i0, and k. The low bits of x + redux
    385  1.1  christos 	 * contain the 16-bit integer part of the exponent (k) followed by
    386  1.1  christos 	 * TBLBITS fractional bits (i0). We use bit tricks to extract these
    387  1.1  christos 	 * as integers, then set z to the remainder.
    388  1.1  christos 	 *
    389  1.1  christos 	 * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
    390  1.1  christos 	 * Then the low-order word of x + redux is 0x000abc12,
    391  1.1  christos 	 * We split this into k = 0xabc and i0 = 0x12 (adjusted to
    392  1.1  christos 	 * index into the table), then we compute z = 0x0.003456p0.
    393  1.1  christos 	 *
    394  1.1  christos 	 * XXX If the exponent is negative, the computation of k depends on
    395  1.1  christos 	 *     '>>' doing sign extension.
    396  1.1  christos 	 */
    397  1.1  christos 	u.extu_ld = x + redux;
    398  1.1  christos 	i0 = (u.extu_fracl & 0xffffffff) + TBLSIZE / 2;
    399  1.1  christos 	k = (int)i0 >> TBLBITS;
    400  1.1  christos 	i0 = i0 & (TBLSIZE - 1);
    401  1.1  christos 	u.extu_ld -= redux;
    402  1.1  christos 	z = x - u.extu_ld;
    403  1.1  christos 	v.extu_frach = 0;
    404  1.1  christos 	v.extu_fracl = 0;
    405  1.1  christos 	if (k >= LDBL_MIN_EXP) {
    406  1.1  christos 		SET_EXPSIGN(&v, LDBL_MAX_EXP - 1 + k);
    407  1.1  christos 		twopk = v.extu_ld;
    408  1.1  christos 	} else {
    409  1.1  christos 		SET_EXPSIGN(&v, LDBL_MAX_EXP - 1 + k + 10000);
    410  1.1  christos 		twopkp10000 = v.extu_ld;
    411  1.1  christos 	}
    412  1.1  christos 
    413  1.1  christos 	/* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
    414  1.1  christos 	t = tbl[i0];		/* exp2t[i0] */
    415  1.1  christos 	z -= eps[i0];		/* eps[i0]   */
    416  1.1  christos 	r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * (P6
    417  1.1  christos 	    + z * (P7 + z * (P8 + z * (P9 + z * P10)))))))));
    418  1.1  christos 
    419  1.1  christos 	/* Scale by 2**k. */
    420  1.1  christos 	if(k >= LDBL_MIN_EXP) {
    421  1.1  christos 		if (k == LDBL_MAX_EXP)
    422  1.1  christos 			return (r * 2.0 * 0x1p16383L);
    423  1.1  christos 		return (r * twopk);
    424  1.1  christos 	} else {
    425  1.1  christos 		return (r * twopkp10000 * twom10000);
    426  1.1  christos 	}
    427  1.1  christos }
    428