1 1.1 christos /*- 2 1.1 christos * SPDX-License-Identifier: BSD-2-Clause 3 1.1 christos * 4 1.1 christos * Copyright (c) 2009-2013 Steven G. Kargl 5 1.1 christos * All rights reserved. 6 1.1 christos * 7 1.1 christos * Redistribution and use in source and binary forms, with or without 8 1.1 christos * modification, are permitted provided that the following conditions 9 1.1 christos * are met: 10 1.1 christos * 1. Redistributions of source code must retain the above copyright 11 1.1 christos * notice unmodified, this list of conditions, and the following 12 1.1 christos * disclaimer. 13 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright 14 1.1 christos * notice, this list of conditions and the following disclaimer in the 15 1.1 christos * documentation and/or other materials provided with the distribution. 16 1.1 christos * 17 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 1.1 christos * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 1.1 christos * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 1.1 christos * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 1.1 christos * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 1.1 christos * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 1.1 christos * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 1.1 christos * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 1.1 christos * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 1.1 christos * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 1.1 christos * 28 1.1 christos * Optimized by Bruce D. Evans. 29 1.1 christos */ 30 1.1 christos 31 1.1 christos #include <sys/cdefs.h> 32 1.1 christos /* 33 1.1 christos * ld128 version of s_expl.c. See ../ld80/s_expl.c for most comments. 34 1.1 christos */ 35 1.1 christos 36 1.1 christos #include <float.h> 37 1.1 christos 38 1.1 christos #include "math.h" 39 1.1 christos #include "math_private.h" 40 1.1 christos #include "k_expl.h" 41 1.1 christos 42 1.1 christos /* XXX Prevent compilers from erroneously constant folding these: */ 43 1.1 christos static const volatile long double 44 1.1 christos huge = 0x1p10000L, 45 1.1 christos tiny = 0x1p-10000L; 46 1.1 christos 47 1.1 christos static const long double 48 1.1 christos twom10000 = 0x1p-10000L; 49 1.1 christos 50 1.1 christos static const long double 51 1.1 christos /* log(2**16384 - 0.5) rounded towards zero: */ 52 1.1 christos /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */ 53 1.1 christos o_threshold = 11356.523406294143949491931077970763428L, 54 1.1 christos /* log(2**(-16381-64-1)) rounded towards zero: */ 55 1.1 christos u_threshold = -11433.462743336297878837243843452621503L; 56 1.1 christos 57 1.1 christos long double 58 1.1 christos expl(long double x) 59 1.1 christos { 60 1.1 christos union ieee_ext_u u; 61 1.1 christos long double hi, lo, t, twopk; 62 1.1 christos int k; 63 1.1 christos uint16_t hx, ix; 64 1.1 christos 65 1.1 christos /* Filter out exceptional cases. */ 66 1.1 christos u.extu_ld = x; 67 1.1 christos hx = GET_EXPSIGN(&u); 68 1.1 christos ix = hx & 0x7fff; 69 1.1 christos if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */ 70 1.1 christos if (ix == BIAS + LDBL_MAX_EXP) { 71 1.1 christos if (hx & 0x8000) /* x is -Inf or -NaN */ 72 1.1 christos RETURNF(-1 / x); 73 1.1 christos RETURNF(x + x); /* x is +Inf or +NaN */ 74 1.1 christos } 75 1.1 christos if (x > o_threshold) 76 1.1 christos RETURNF(huge * huge); 77 1.1 christos if (x < u_threshold) 78 1.1 christos RETURNF(tiny * tiny); 79 1.1 christos } else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */ 80 1.1 christos RETURNF(1 + x); /* 1 with inexact iff x != 0 */ 81 1.1 christos } 82 1.1 christos 83 1.1 christos ENTERI(); 84 1.1 christos 85 1.1 christos twopk = 1; 86 1.1 christos __k_expl(x, &hi, &lo, &k); 87 1.1 christos t = SUM2P(hi, lo); 88 1.1 christos 89 1.1 christos /* Scale by 2**k. */ 90 1.1 christos /* 91 1.1 christos * XXX sparc64 multiplication was so slow that scalbnl() is faster, 92 1.1 christos * but performance on aarch64 and riscv hasn't yet been quantified. 93 1.1 christos */ 94 1.1 christos if (k >= LDBL_MIN_EXP) { 95 1.1 christos if (k == LDBL_MAX_EXP) 96 1.1 christos RETURNI(t * 2 * 0x1p16383L); 97 1.1 christos SET_LDBL_EXPSIGN(twopk, BIAS + k); 98 1.1 christos RETURNI(t * twopk); 99 1.1 christos } else { 100 1.1 christos SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000); 101 1.1 christos RETURNI(t * twopk * twom10000); 102 1.1 christos } 103 1.1 christos } 104 1.1 christos 105 1.1 christos /* 106 1.1 christos * Our T1 and T2 are chosen to be approximately the points where method 107 1.1 christos * A and method B have the same accuracy. Tang's T1 and T2 are the 108 1.1 christos * points where method A's accuracy changes by a full bit. For Tang, 109 1.1 christos * this drop in accuracy makes method A immediately less accurate than 110 1.1 christos * method B, but our larger INTERVALS makes method A 2 bits more 111 1.1 christos * accurate so it remains the most accurate method significantly 112 1.1 christos * closer to the origin despite losing the full bit in our extended 113 1.1 christos * range for it. 114 1.1 christos * 115 1.1 christos * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2]. 116 1.1 christos * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear 117 1.1 christos * in both subintervals, so set T3 = 2**-5, which places the condition 118 1.1 christos * into the [T1, T3] interval. 119 1.1 christos * 120 1.1 christos * XXX we now do this more to (partially) balance the number of terms 121 1.1 christos * in the C and D polys than to avoid checking the condition in both 122 1.1 christos * intervals. 123 1.1 christos * 124 1.1 christos * XXX these micro-optimizations are excessive. 125 1.1 christos */ 126 1.1 christos static const double 127 1.1 christos T1 = -0.1659, /* ~-30.625/128 * log(2) */ 128 1.1 christos T2 = 0.1659, /* ~30.625/128 * log(2) */ 129 1.1 christos T3 = 0.03125; 130 1.1 christos 131 1.1 christos /* 132 1.1 christos * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]: 133 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03 134 1.1 christos * 135 1.1 christos * XXX none of the long double C or D coeffs except C10 is correctly printed. 136 1.1 christos * If you re-print their values in %.35Le format, the result is always 137 1.1 christos * different. For example, the last 2 digits in C3 should be 59, not 67. 138 1.1 christos * 67 is apparently from rounding an extra-precision value to 36 decimal 139 1.1 christos * places. 140 1.1 christos */ 141 1.1 christos static const long double 142 1.1 christos C3 = 1.66666666666666666666666666666666667e-1L, 143 1.1 christos C4 = 4.16666666666666666666666666666666645e-2L, 144 1.1 christos C5 = 8.33333333333333333333333333333371638e-3L, 145 1.1 christos C6 = 1.38888888888888888888888888891188658e-3L, 146 1.1 christos C7 = 1.98412698412698412698412697235950394e-4L, 147 1.1 christos C8 = 2.48015873015873015873015112487849040e-5L, 148 1.1 christos C9 = 2.75573192239858906525606685484412005e-6L, 149 1.1 christos C10 = 2.75573192239858906612966093057020362e-7L, 150 1.1 christos C11 = 2.50521083854417203619031960151253944e-8L, 151 1.1 christos C12 = 2.08767569878679576457272282566520649e-9L, 152 1.1 christos C13 = 1.60590438367252471783548748824255707e-10L; 153 1.1 christos 154 1.1 christos /* 155 1.1 christos * XXX this has 1 more coeff than needed. 156 1.1 christos * XXX can start the double coeffs but not the double mults at C10. 157 1.1 christos * With my coeffs (C10-C17 double; s = best_s): 158 1.1 christos * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]: 159 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65 160 1.1 christos */ 161 1.1 christos static const double 162 1.1 christos C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */ 163 1.1 christos C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */ 164 1.1 christos C16 = 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */ 165 1.1 christos C17 = 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */ 166 1.1 christos C18 = 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */ 167 1.1 christos 168 1.1 christos /* 169 1.1 christos * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]: 170 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44 171 1.1 christos */ 172 1.1 christos static const long double 173 1.1 christos D3 = 1.66666666666666666666666666666682245e-1L, 174 1.1 christos D4 = 4.16666666666666666666666666634228324e-2L, 175 1.1 christos D5 = 8.33333333333333333333333364022244481e-3L, 176 1.1 christos D6 = 1.38888888888888888888887138722762072e-3L, 177 1.1 christos D7 = 1.98412698412698412699085805424661471e-4L, 178 1.1 christos D8 = 2.48015873015873015687993712101479612e-5L, 179 1.1 christos D9 = 2.75573192239858944101036288338208042e-6L, 180 1.1 christos D10 = 2.75573192239853161148064676533754048e-7L, 181 1.1 christos D11 = 2.50521083855084570046480450935267433e-8L, 182 1.1 christos D12 = 2.08767569819738524488686318024854942e-9L, 183 1.1 christos D13 = 1.60590442297008495301927448122499313e-10L; 184 1.1 christos 185 1.1 christos /* 186 1.1 christos * XXX this has 1 more coeff than needed. 187 1.1 christos * XXX can start the double coeffs but not the double mults at D11. 188 1.1 christos * With my coeffs (D11-D16 double): 189 1.1 christos * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]: 190 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65 191 1.1 christos */ 192 1.1 christos static const double 193 1.1 christos D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */ 194 1.1 christos D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */ 195 1.1 christos D16 = 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */ 196 1.1 christos D17 = 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */ 197 1.1 christos 198 1.1 christos long double 199 1.1 christos expm1l(long double x) 200 1.1 christos { 201 1.1 christos union ieee_ext_u u, v; 202 1.1 christos long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi; 203 1.1 christos long double x_lo, x2; 204 1.1 christos double dr, dx, fn, r2; 205 1.1 christos int k, n, n2; 206 1.1 christos uint16_t hx, ix; 207 1.1 christos 208 1.1 christos /* Filter out exceptional cases. */ 209 1.1 christos u.extu_ld = x; 210 1.1 christos hx = GET_EXPSIGN(&u); 211 1.1 christos ix = hx & 0x7fff; 212 1.1 christos if (ix >= BIAS + 7) { /* |x| >= 128 or x is NaN */ 213 1.1 christos if (ix == BIAS + LDBL_MAX_EXP) { 214 1.1 christos if (hx & 0x8000) /* x is -Inf or -NaN */ 215 1.1 christos RETURNF(-1 / x - 1); 216 1.1 christos RETURNF(x + x); /* x is +Inf or +NaN */ 217 1.1 christos } 218 1.1 christos if (x > o_threshold) 219 1.1 christos RETURNF(huge * huge); 220 1.1 christos /* 221 1.1 christos * expm1l() never underflows, but it must avoid 222 1.1 christos * unrepresentable large negative exponents. We used a 223 1.1 christos * much smaller threshold for large |x| above than in 224 1.1 christos * expl() so as to handle not so large negative exponents 225 1.1 christos * in the same way as large ones here. 226 1.1 christos */ 227 1.1 christos if (hx & 0x8000) /* x <= -128 */ 228 1.1 christos RETURNF(tiny - 1); /* good for x < -114ln2 - eps */ 229 1.1 christos } 230 1.1 christos 231 1.1 christos ENTERI(); 232 1.1 christos 233 1.1 christos if (T1 < x && x < T2) { 234 1.1 christos x2 = x * x; 235 1.1 christos dx = x; 236 1.1 christos 237 1.1 christos if (x < T3) { 238 1.1 christos if (ix < BIAS - 113) { /* |x| < 0x1p-113 */ 239 1.1 christos /* x (rounded) with inexact if x != 0: */ 240 1.1 christos RETURNI(x == 0 ? x : 241 1.1 christos (0x1p200 * x + fabsl(x)) * 0x1p-200); 242 1.1 christos } 243 1.1 christos q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 + 244 1.1 christos x * (C7 + x * (C8 + x * (C9 + x * (C10 + 245 1.1 christos x * (C11 + x * (C12 + x * (C13 + 246 1.1 christos dx * (C14 + dx * (C15 + dx * (C16 + 247 1.1 christos dx * (C17 + dx * C18)))))))))))))); 248 1.1 christos } else { 249 1.1 christos q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 + 250 1.1 christos x * (D7 + x * (D8 + x * (D9 + x * (D10 + 251 1.1 christos x * (D11 + x * (D12 + x * (D13 + 252 1.1 christos dx * (D14 + dx * (D15 + dx * (D16 + 253 1.1 christos dx * D17))))))))))))); 254 1.1 christos } 255 1.1 christos 256 1.1 christos x_hi = (float)x; 257 1.1 christos x_lo = x - x_hi; 258 1.1 christos hx2_hi = x_hi * x_hi / 2; 259 1.1 christos hx2_lo = x_lo * (x + x_hi) / 2; 260 1.1 christos if (ix >= BIAS - 7) 261 1.1 christos RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q)); 262 1.1 christos else 263 1.1 christos RETURNI(x + (hx2_lo + q + hx2_hi)); 264 1.1 christos } 265 1.1 christos 266 1.1 christos /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */ 267 1.1 christos fn = rnint((double)x * INV_L); 268 1.1 christos n = irint(fn); 269 1.1 christos n2 = (unsigned)n % INTERVALS; 270 1.1 christos k = n >> LOG2_INTERVALS; 271 1.1 christos r1 = x - fn * L1; 272 1.1 christos r2 = fn * -L2; 273 1.1 christos r = r1 + r2; 274 1.1 christos 275 1.1 christos /* Prepare scale factor. */ 276 1.1 christos v.extu_ld = 1; 277 1.1 christos SET_EXPSIGN(&v, BIAS + k); 278 1.1 christos twopk = v.extu_ld; 279 1.1 christos 280 1.1 christos /* 281 1.1 christos * Evaluate lower terms of 282 1.1 christos * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). 283 1.1 christos */ 284 1.1 christos dr = r; 285 1.1 christos q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 + 286 1.1 christos dr * (A7 + dr * (A8 + dr * (A9 + dr * A10)))))))); 287 1.1 christos 288 1.1 christos t = tbl[n2].lo + tbl[n2].hi; 289 1.1 christos 290 1.1 christos if (k == 0) { 291 1.1 christos t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q + 292 1.1 christos tbl[n2].hi * r1); 293 1.1 christos RETURNI(t); 294 1.1 christos } 295 1.1 christos if (k == -1) { 296 1.1 christos t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q + 297 1.1 christos tbl[n2].hi * r1); 298 1.1 christos RETURNI(t / 2); 299 1.1 christos } 300 1.1 christos if (k < -7) { 301 1.1 christos t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1)); 302 1.1 christos RETURNI(t * twopk - 1); 303 1.1 christos } 304 1.1 christos if (k > 2 * LDBL_MANT_DIG - 1) { 305 1.1 christos t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1)); 306 1.1 christos if (k == LDBL_MAX_EXP) 307 1.1 christos RETURNI(t * 2 * 0x1p16383L - 1); 308 1.1 christos RETURNI(t * twopk - 1); 309 1.1 christos } 310 1.1 christos 311 1.1 christos SET_EXPSIGN(&v, BIAS - k); 312 1.1 christos twomk = v.extu_ld; 313 1.1 christos 314 1.1 christos if (k > LDBL_MANT_DIG - 1) 315 1.1 christos t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1)); 316 1.1 christos else 317 1.1 christos t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1)); 318 1.1 christos RETURNI(t * twopk); 319 1.1 christos } 320