s_expl.c revision 1.1 1 1.1 christos /*-
2 1.1 christos * SPDX-License-Identifier: BSD-2-Clause
3 1.1 christos *
4 1.1 christos * Copyright (c) 2009-2013 Steven G. Kargl
5 1.1 christos * All rights reserved.
6 1.1 christos *
7 1.1 christos * Redistribution and use in source and binary forms, with or without
8 1.1 christos * modification, are permitted provided that the following conditions
9 1.1 christos * are met:
10 1.1 christos * 1. Redistributions of source code must retain the above copyright
11 1.1 christos * notice unmodified, this list of conditions, and the following
12 1.1 christos * disclaimer.
13 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 christos * notice, this list of conditions and the following disclaimer in the
15 1.1 christos * documentation and/or other materials provided with the distribution.
16 1.1 christos *
17 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 1.1 christos * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 1.1 christos * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.1 christos * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 1.1 christos * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 1.1 christos * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 1.1 christos * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 1.1 christos * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 1.1 christos * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 1.1 christos * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 1.1 christos *
28 1.1 christos * Optimized by Bruce D. Evans.
29 1.1 christos */
30 1.1 christos
31 1.1 christos #include <sys/cdefs.h>
32 1.1 christos /*
33 1.1 christos * ld128 version of s_expl.c. See ../ld80/s_expl.c for most comments.
34 1.1 christos */
35 1.1 christos
36 1.1 christos #include <float.h>
37 1.1 christos
38 1.1 christos #include "math.h"
39 1.1 christos #include "math_private.h"
40 1.1 christos #include "k_expl.h"
41 1.1 christos
42 1.1 christos /* XXX Prevent compilers from erroneously constant folding these: */
43 1.1 christos static const volatile long double
44 1.1 christos huge = 0x1p10000L,
45 1.1 christos tiny = 0x1p-10000L;
46 1.1 christos
47 1.1 christos static const long double
48 1.1 christos twom10000 = 0x1p-10000L;
49 1.1 christos
50 1.1 christos static const long double
51 1.1 christos /* log(2**16384 - 0.5) rounded towards zero: */
52 1.1 christos /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
53 1.1 christos o_threshold = 11356.523406294143949491931077970763428L,
54 1.1 christos /* log(2**(-16381-64-1)) rounded towards zero: */
55 1.1 christos u_threshold = -11433.462743336297878837243843452621503L;
56 1.1 christos
57 1.1 christos long double
58 1.1 christos expl(long double x)
59 1.1 christos {
60 1.1 christos union ieee_ext_u u;
61 1.1 christos long double hi, lo, t, twopk;
62 1.1 christos int k;
63 1.1 christos uint16_t hx, ix;
64 1.1 christos
65 1.1 christos /* Filter out exceptional cases. */
66 1.1 christos u.extu_ld = x;
67 1.1 christos hx = GET_EXPSIGN(&u);
68 1.1 christos ix = hx & 0x7fff;
69 1.1 christos if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
70 1.1 christos if (ix == BIAS + LDBL_MAX_EXP) {
71 1.1 christos if (hx & 0x8000) /* x is -Inf or -NaN */
72 1.1 christos RETURNF(-1 / x);
73 1.1 christos RETURNF(x + x); /* x is +Inf or +NaN */
74 1.1 christos }
75 1.1 christos if (x > o_threshold)
76 1.1 christos RETURNF(huge * huge);
77 1.1 christos if (x < u_threshold)
78 1.1 christos RETURNF(tiny * tiny);
79 1.1 christos } else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */
80 1.1 christos RETURNF(1 + x); /* 1 with inexact iff x != 0 */
81 1.1 christos }
82 1.1 christos
83 1.1 christos ENTERI();
84 1.1 christos
85 1.1 christos twopk = 1;
86 1.1 christos __k_expl(x, &hi, &lo, &k);
87 1.1 christos t = SUM2P(hi, lo);
88 1.1 christos
89 1.1 christos /* Scale by 2**k. */
90 1.1 christos /*
91 1.1 christos * XXX sparc64 multiplication was so slow that scalbnl() is faster,
92 1.1 christos * but performance on aarch64 and riscv hasn't yet been quantified.
93 1.1 christos */
94 1.1 christos if (k >= LDBL_MIN_EXP) {
95 1.1 christos if (k == LDBL_MAX_EXP)
96 1.1 christos RETURNI(t * 2 * 0x1p16383L);
97 1.1 christos SET_LDBL_EXPSIGN(twopk, BIAS + k);
98 1.1 christos RETURNI(t * twopk);
99 1.1 christos } else {
100 1.1 christos SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
101 1.1 christos RETURNI(t * twopk * twom10000);
102 1.1 christos }
103 1.1 christos }
104 1.1 christos
105 1.1 christos /*
106 1.1 christos * Our T1 and T2 are chosen to be approximately the points where method
107 1.1 christos * A and method B have the same accuracy. Tang's T1 and T2 are the
108 1.1 christos * points where method A's accuracy changes by a full bit. For Tang,
109 1.1 christos * this drop in accuracy makes method A immediately less accurate than
110 1.1 christos * method B, but our larger INTERVALS makes method A 2 bits more
111 1.1 christos * accurate so it remains the most accurate method significantly
112 1.1 christos * closer to the origin despite losing the full bit in our extended
113 1.1 christos * range for it.
114 1.1 christos *
115 1.1 christos * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
116 1.1 christos * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
117 1.1 christos * in both subintervals, so set T3 = 2**-5, which places the condition
118 1.1 christos * into the [T1, T3] interval.
119 1.1 christos *
120 1.1 christos * XXX we now do this more to (partially) balance the number of terms
121 1.1 christos * in the C and D polys than to avoid checking the condition in both
122 1.1 christos * intervals.
123 1.1 christos *
124 1.1 christos * XXX these micro-optimizations are excessive.
125 1.1 christos */
126 1.1 christos static const double
127 1.1 christos T1 = -0.1659, /* ~-30.625/128 * log(2) */
128 1.1 christos T2 = 0.1659, /* ~30.625/128 * log(2) */
129 1.1 christos T3 = 0.03125;
130 1.1 christos
131 1.1 christos /*
132 1.1 christos * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
133 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
134 1.1 christos *
135 1.1 christos * XXX none of the long double C or D coeffs except C10 is correctly printed.
136 1.1 christos * If you re-print their values in %.35Le format, the result is always
137 1.1 christos * different. For example, the last 2 digits in C3 should be 59, not 67.
138 1.1 christos * 67 is apparently from rounding an extra-precision value to 36 decimal
139 1.1 christos * places.
140 1.1 christos */
141 1.1 christos static const long double
142 1.1 christos C3 = 1.66666666666666666666666666666666667e-1L,
143 1.1 christos C4 = 4.16666666666666666666666666666666645e-2L,
144 1.1 christos C5 = 8.33333333333333333333333333333371638e-3L,
145 1.1 christos C6 = 1.38888888888888888888888888891188658e-3L,
146 1.1 christos C7 = 1.98412698412698412698412697235950394e-4L,
147 1.1 christos C8 = 2.48015873015873015873015112487849040e-5L,
148 1.1 christos C9 = 2.75573192239858906525606685484412005e-6L,
149 1.1 christos C10 = 2.75573192239858906612966093057020362e-7L,
150 1.1 christos C11 = 2.50521083854417203619031960151253944e-8L,
151 1.1 christos C12 = 2.08767569878679576457272282566520649e-9L,
152 1.1 christos C13 = 1.60590438367252471783548748824255707e-10L;
153 1.1 christos
154 1.1 christos /*
155 1.1 christos * XXX this has 1 more coeff than needed.
156 1.1 christos * XXX can start the double coeffs but not the double mults at C10.
157 1.1 christos * With my coeffs (C10-C17 double; s = best_s):
158 1.1 christos * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
159 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
160 1.1 christos */
161 1.1 christos static const double
162 1.1 christos C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */
163 1.1 christos C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */
164 1.1 christos C16 = 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */
165 1.1 christos C17 = 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */
166 1.1 christos C18 = 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */
167 1.1 christos
168 1.1 christos /*
169 1.1 christos * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
170 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
171 1.1 christos */
172 1.1 christos static const long double
173 1.1 christos D3 = 1.66666666666666666666666666666682245e-1L,
174 1.1 christos D4 = 4.16666666666666666666666666634228324e-2L,
175 1.1 christos D5 = 8.33333333333333333333333364022244481e-3L,
176 1.1 christos D6 = 1.38888888888888888888887138722762072e-3L,
177 1.1 christos D7 = 1.98412698412698412699085805424661471e-4L,
178 1.1 christos D8 = 2.48015873015873015687993712101479612e-5L,
179 1.1 christos D9 = 2.75573192239858944101036288338208042e-6L,
180 1.1 christos D10 = 2.75573192239853161148064676533754048e-7L,
181 1.1 christos D11 = 2.50521083855084570046480450935267433e-8L,
182 1.1 christos D12 = 2.08767569819738524488686318024854942e-9L,
183 1.1 christos D13 = 1.60590442297008495301927448122499313e-10L;
184 1.1 christos
185 1.1 christos /*
186 1.1 christos * XXX this has 1 more coeff than needed.
187 1.1 christos * XXX can start the double coeffs but not the double mults at D11.
188 1.1 christos * With my coeffs (D11-D16 double):
189 1.1 christos * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
190 1.1 christos * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
191 1.1 christos */
192 1.1 christos static const double
193 1.1 christos D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */
194 1.1 christos D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */
195 1.1 christos D16 = 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */
196 1.1 christos D17 = 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */
197 1.1 christos
198 1.1 christos long double
199 1.1 christos expm1l(long double x)
200 1.1 christos {
201 1.1 christos union ieee_ext_u u, v;
202 1.1 christos long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
203 1.1 christos long double x_lo, x2;
204 1.1 christos double dr, dx, fn, r2;
205 1.1 christos int k, n, n2;
206 1.1 christos uint16_t hx, ix;
207 1.1 christos
208 1.1 christos /* Filter out exceptional cases. */
209 1.1 christos u.extu_ld = x;
210 1.1 christos hx = GET_EXPSIGN(&u);
211 1.1 christos ix = hx & 0x7fff;
212 1.1 christos if (ix >= BIAS + 7) { /* |x| >= 128 or x is NaN */
213 1.1 christos if (ix == BIAS + LDBL_MAX_EXP) {
214 1.1 christos if (hx & 0x8000) /* x is -Inf or -NaN */
215 1.1 christos RETURNF(-1 / x - 1);
216 1.1 christos RETURNF(x + x); /* x is +Inf or +NaN */
217 1.1 christos }
218 1.1 christos if (x > o_threshold)
219 1.1 christos RETURNF(huge * huge);
220 1.1 christos /*
221 1.1 christos * expm1l() never underflows, but it must avoid
222 1.1 christos * unrepresentable large negative exponents. We used a
223 1.1 christos * much smaller threshold for large |x| above than in
224 1.1 christos * expl() so as to handle not so large negative exponents
225 1.1 christos * in the same way as large ones here.
226 1.1 christos */
227 1.1 christos if (hx & 0x8000) /* x <= -128 */
228 1.1 christos RETURNF(tiny - 1); /* good for x < -114ln2 - eps */
229 1.1 christos }
230 1.1 christos
231 1.1 christos ENTERI();
232 1.1 christos
233 1.1 christos if (T1 < x && x < T2) {
234 1.1 christos x2 = x * x;
235 1.1 christos dx = x;
236 1.1 christos
237 1.1 christos if (x < T3) {
238 1.1 christos if (ix < BIAS - 113) { /* |x| < 0x1p-113 */
239 1.1 christos /* x (rounded) with inexact if x != 0: */
240 1.1 christos RETURNI(x == 0 ? x :
241 1.1 christos (0x1p200 * x + fabsl(x)) * 0x1p-200);
242 1.1 christos }
243 1.1 christos q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
244 1.1 christos x * (C7 + x * (C8 + x * (C9 + x * (C10 +
245 1.1 christos x * (C11 + x * (C12 + x * (C13 +
246 1.1 christos dx * (C14 + dx * (C15 + dx * (C16 +
247 1.1 christos dx * (C17 + dx * C18))))))))))))));
248 1.1 christos } else {
249 1.1 christos q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
250 1.1 christos x * (D7 + x * (D8 + x * (D9 + x * (D10 +
251 1.1 christos x * (D11 + x * (D12 + x * (D13 +
252 1.1 christos dx * (D14 + dx * (D15 + dx * (D16 +
253 1.1 christos dx * D17)))))))))))));
254 1.1 christos }
255 1.1 christos
256 1.1 christos x_hi = (float)x;
257 1.1 christos x_lo = x - x_hi;
258 1.1 christos hx2_hi = x_hi * x_hi / 2;
259 1.1 christos hx2_lo = x_lo * (x + x_hi) / 2;
260 1.1 christos if (ix >= BIAS - 7)
261 1.1 christos RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
262 1.1 christos else
263 1.1 christos RETURNI(x + (hx2_lo + q + hx2_hi));
264 1.1 christos }
265 1.1 christos
266 1.1 christos /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
267 1.1 christos fn = rnint((double)x * INV_L);
268 1.1 christos n = irint(fn);
269 1.1 christos n2 = (unsigned)n % INTERVALS;
270 1.1 christos k = n >> LOG2_INTERVALS;
271 1.1 christos r1 = x - fn * L1;
272 1.1 christos r2 = fn * -L2;
273 1.1 christos r = r1 + r2;
274 1.1 christos
275 1.1 christos /* Prepare scale factor. */
276 1.1 christos v.extu_ld = 1;
277 1.1 christos SET_EXPSIGN(&v, BIAS + k);
278 1.1 christos twopk = v.extu_ld;
279 1.1 christos
280 1.1 christos /*
281 1.1 christos * Evaluate lower terms of
282 1.1 christos * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
283 1.1 christos */
284 1.1 christos dr = r;
285 1.1 christos q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
286 1.1 christos dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
287 1.1 christos
288 1.1 christos t = tbl[n2].lo + tbl[n2].hi;
289 1.1 christos
290 1.1 christos if (k == 0) {
291 1.1 christos t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
292 1.1 christos tbl[n2].hi * r1);
293 1.1 christos RETURNI(t);
294 1.1 christos }
295 1.1 christos if (k == -1) {
296 1.1 christos t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
297 1.1 christos tbl[n2].hi * r1);
298 1.1 christos RETURNI(t / 2);
299 1.1 christos }
300 1.1 christos if (k < -7) {
301 1.1 christos t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
302 1.1 christos RETURNI(t * twopk - 1);
303 1.1 christos }
304 1.1 christos if (k > 2 * LDBL_MANT_DIG - 1) {
305 1.1 christos t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
306 1.1 christos if (k == LDBL_MAX_EXP)
307 1.1 christos RETURNI(t * 2 * 0x1p16383L - 1);
308 1.1 christos RETURNI(t * twopk - 1);
309 1.1 christos }
310 1.1 christos
311 1.1 christos SET_EXPSIGN(&v, BIAS - k);
312 1.1 christos twomk = v.extu_ld;
313 1.1 christos
314 1.1 christos if (k > LDBL_MANT_DIG - 1)
315 1.1 christos t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
316 1.1 christos else
317 1.1 christos t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
318 1.1 christos RETURNI(t * twopk);
319 1.1 christos }
320