Home | History | Annotate | Line # | Download | only in ld80
      1  1.1  christos /* From: @(#)k_cos.c 1.3 95/01/18 */
      2  1.1  christos /*
      3  1.1  christos  * ====================================================
      4  1.1  christos  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  1.1  christos  * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
      6  1.1  christos  *
      7  1.1  christos  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  1.1  christos  * Permission to use, copy, modify, and distribute this
      9  1.1  christos  * software is freely granted, provided that this notice
     10  1.1  christos  * is preserved.
     11  1.1  christos  * ====================================================
     12  1.1  christos  */
     13  1.1  christos 
     14  1.1  christos #include <sys/cdefs.h>
     15  1.1  christos /*
     16  1.1  christos  * ld80 version of k_cos.c.  See ../src/k_cos.c for most comments.
     17  1.1  christos  */
     18  1.1  christos 
     19  1.1  christos #include "math_private.h"
     20  1.1  christos 
     21  1.1  christos /*
     22  1.1  christos  * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
     23  1.1  christos  * |cos(x) - c(x)| < 2**-75.1
     24  1.1  christos  *
     25  1.1  christos  * The coefficients of c(x) were generated by a pari-gp script using
     26  1.1  christos  * a Remez algorithm that searches for the best higher coefficients
     27  1.1  christos  * after rounding leading coefficients to a specified precision.
     28  1.1  christos  *
     29  1.1  christos  * Simpler methods like Chebyshev or basic Remez barely suffice for
     30  1.1  christos  * cos() in 64-bit precision, because we want the coefficient of x^2
     31  1.1  christos  * to be precisely -0.5 so that multiplying by it is exact, and plain
     32  1.1  christos  * rounding of the coefficients of a good polynomial approximation only
     33  1.1  christos  * gives this up to about 64-bit precision.  Plain rounding also gives
     34  1.1  christos  * a mediocre approximation for the coefficient of x^4, but a rounding
     35  1.1  christos  * error of 0.5 ulps for this coefficient would only contribute ~0.01
     36  1.1  christos  * ulps to the final error, so this is unimportant.  Rounding errors in
     37  1.1  christos  * higher coefficients are even less important.
     38  1.1  christos  *
     39  1.1  christos  * In fact, coefficients above the x^4 one only need to have 53-bit
     40  1.1  christos  * precision, and this is more efficient.  We get this optimization
     41  1.1  christos  * almost for free from the complications needed to search for the best
     42  1.1  christos  * higher coefficients.
     43  1.1  christos  */
     44  1.1  christos static const double
     45  1.1  christos one = 1.0;
     46  1.1  christos 
     47  1.1  christos #if defined(__amd64__) || defined(__i386__)
     48  1.1  christos /* Long double constants are slow on these arches, and broken on i386. */
     49  1.1  christos static const volatile double
     50  1.1  christos C1hi = 0.041666666666666664,		/*  0x15555555555555.0p-57 */
     51  1.1  christos C1lo = 2.2598839032744733e-18;		/*  0x14d80000000000.0p-111 */
     52  1.1  christos #define	C1	((long double)C1hi + C1lo)
     53  1.1  christos #else
     54  1.1  christos static const long double
     55  1.1  christos C1 =  0.0416666666666666666136L;	/*  0xaaaaaaaaaaaaaa9b.0p-68 */
     56  1.1  christos #endif
     57  1.1  christos 
     58  1.1  christos static const double
     59  1.1  christos C2 = -0.0013888888888888874,		/* -0x16c16c16c16c10.0p-62 */
     60  1.1  christos C3 =  0.000024801587301571716,		/*  0x1a01a01a018e22.0p-68 */
     61  1.1  christos C4 = -0.00000027557319215507120,	/* -0x127e4fb7602f22.0p-74 */
     62  1.1  christos C5 =  0.0000000020876754400407278,	/*  0x11eed8caaeccf1.0p-81 */
     63  1.1  christos C6 = -1.1470297442401303e-11,		/* -0x19393412bd1529.0p-89 */
     64  1.1  christos C7 =  4.7383039476436467e-14;		/*  0x1aac9d9af5c43e.0p-97 */
     65  1.1  christos 
     66  1.1  christos long double
     67  1.1  christos __kernel_cosl(long double x, long double y)
     68  1.1  christos {
     69  1.1  christos 	long double hz,z,r,w;
     70  1.1  christos 
     71  1.1  christos 	z  = x*x;
     72  1.1  christos 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
     73  1.1  christos 	hz = 0.5*z;
     74  1.1  christos 	w  = one-hz;
     75  1.1  christos 	return w + (((one-w)-hz) + (z*r-x*y));
     76  1.1  christos }
     77