Home | History | Annotate | Line # | Download | only in ld80
s_expl.c revision 1.1
      1  1.1  christos /*-
      2  1.1  christos  * SPDX-License-Identifier: BSD-2-Clause
      3  1.1  christos  *
      4  1.1  christos  * Copyright (c) 2009-2013 Steven G. Kargl
      5  1.1  christos  * All rights reserved.
      6  1.1  christos  *
      7  1.1  christos  * Redistribution and use in source and binary forms, with or without
      8  1.1  christos  * modification, are permitted provided that the following conditions
      9  1.1  christos  * are met:
     10  1.1  christos  * 1. Redistributions of source code must retain the above copyright
     11  1.1  christos  *    notice unmodified, this list of conditions, and the following
     12  1.1  christos  *    disclaimer.
     13  1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     15  1.1  christos  *    documentation and/or other materials provided with the distribution.
     16  1.1  christos  *
     17  1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  1.1  christos  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  1.1  christos  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  1.1  christos  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  1.1  christos  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  1.1  christos  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  1.1  christos  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  1.1  christos  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  1.1  christos  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  1.1  christos  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  1.1  christos  *
     28  1.1  christos  * Optimized by Bruce D. Evans.
     29  1.1  christos  */
     30  1.1  christos 
     31  1.1  christos #include <sys/cdefs.h>
     32  1.1  christos /**
     33  1.1  christos  * Compute the exponential of x for Intel 80-bit format.  This is based on:
     34  1.1  christos  *
     35  1.1  christos  *   PTP Tang, "Table-driven implementation of the exponential function
     36  1.1  christos  *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
     37  1.1  christos  *   144-157 (1989).
     38  1.1  christos  *
     39  1.1  christos  * where the 32 table entries have been expanded to INTERVALS (see below).
     40  1.1  christos  */
     41  1.1  christos 
     42  1.1  christos #include <float.h>
     43  1.1  christos 
     44  1.1  christos #ifdef __i386__
     45  1.1  christos #include <ieeefp.h>
     46  1.1  christos #endif
     47  1.1  christos 
     48  1.1  christos #ifdef __FreeBSD__
     49  1.1  christos #include "fpmath.h"
     50  1.1  christos #endif
     51  1.1  christos #include "math.h"
     52  1.1  christos #include "math_private.h"
     53  1.1  christos #include "k_expl.h"
     54  1.1  christos 
     55  1.1  christos /* XXX Prevent compilers from erroneously constant folding these: */
     56  1.1  christos static const volatile long double
     57  1.1  christos huge = 0x1p10000L,
     58  1.1  christos tiny = 0x1p-10000L;
     59  1.1  christos 
     60  1.1  christos static const long double
     61  1.1  christos twom10000 = 0x1p-10000L;
     62  1.1  christos 
     63  1.1  christos static const union ieee_ext_u
     64  1.1  christos /* log(2**16384 - 0.5) rounded towards zero: */
     65  1.1  christos /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
     66  1.1  christos o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13,  11356.5234062941439488L),
     67  1.1  christos #define o_threshold	 (o_thresholdu.extu_ld)
     68  1.1  christos /* log(2**(-16381-64-1)) rounded towards zero: */
     69  1.1  christos u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
     70  1.1  christos #define u_threshold	 (u_thresholdu.extu_ld)
     71  1.1  christos 
     72  1.1  christos long double
     73  1.1  christos expl(long double x)
     74  1.1  christos {
     75  1.1  christos 	union ieee_ext_u u;
     76  1.1  christos 	long double hi, lo, t, twopk;
     77  1.1  christos 	int k;
     78  1.1  christos 	uint16_t hx, ix;
     79  1.1  christos 
     80  1.1  christos 	/* Filter out exceptional cases. */
     81  1.1  christos 	u.extu_ld = x;
     82  1.1  christos 	hx = GET_EXPSIGN(&u);
     83  1.1  christos 	ix = hx & 0x7fff;
     84  1.1  christos 	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
     85  1.1  christos 		if (ix == BIAS + LDBL_MAX_EXP) {
     86  1.1  christos 			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
     87  1.1  christos 				RETURNF(-1 / x);
     88  1.1  christos 			RETURNF(x + x);	/* x is +Inf, +NaN or unsupported */
     89  1.1  christos 		}
     90  1.1  christos 		if (x > o_threshold)
     91  1.1  christos 			RETURNF(huge * huge);
     92  1.1  christos 		if (x < u_threshold)
     93  1.1  christos 			RETURNF(tiny * tiny);
     94  1.1  christos 	} else if (ix < BIAS - 75) {	/* |x| < 0x1p-75 (includes pseudos) */
     95  1.1  christos 		RETURNF(1 + x);		/* 1 with inexact iff x != 0 */
     96  1.1  christos 	}
     97  1.1  christos 
     98  1.1  christos 	ENTERI();
     99  1.1  christos 
    100  1.1  christos 	twopk = 1;
    101  1.1  christos 	__k_expl(x, &hi, &lo, &k);
    102  1.1  christos 	t = SUM2P(hi, lo);
    103  1.1  christos 
    104  1.1  christos 	/* Scale by 2**k. */
    105  1.1  christos 	if (k >= LDBL_MIN_EXP) {
    106  1.1  christos 		if (k == LDBL_MAX_EXP)
    107  1.1  christos 			RETURNI(t * 2 * 0x1p16383L);
    108  1.1  christos 		SET_LDBL_EXPSIGN(twopk, BIAS + k);
    109  1.1  christos 		RETURNI(t * twopk);
    110  1.1  christos 	} else {
    111  1.1  christos 		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
    112  1.1  christos 		RETURNI(t * twopk * twom10000);
    113  1.1  christos 	}
    114  1.1  christos }
    115  1.1  christos 
    116  1.1  christos /**
    117  1.1  christos  * Compute expm1l(x) for Intel 80-bit format.  This is based on:
    118  1.1  christos  *
    119  1.1  christos  *   PTP Tang, "Table-driven implementation of the Expm1 function
    120  1.1  christos  *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
    121  1.1  christos  *   211-222 (1992).
    122  1.1  christos  */
    123  1.1  christos 
    124  1.1  christos /*
    125  1.1  christos  * Our T1 and T2 are chosen to be approximately the points where method
    126  1.1  christos  * A and method B have the same accuracy.  Tang's T1 and T2 are the
    127  1.1  christos  * points where method A's accuracy changes by a full bit.  For Tang,
    128  1.1  christos  * this drop in accuracy makes method A immediately less accurate than
    129  1.1  christos  * method B, but our larger INTERVALS makes method A 2 bits more
    130  1.1  christos  * accurate so it remains the most accurate method significantly
    131  1.1  christos  * closer to the origin despite losing the full bit in our extended
    132  1.1  christos  * range for it.
    133  1.1  christos  */
    134  1.1  christos static const double
    135  1.1  christos T1 = -0.1659,				/* ~-30.625/128 * log(2) */
    136  1.1  christos T2 =  0.1659;				/* ~30.625/128 * log(2) */
    137  1.1  christos 
    138  1.1  christos /*
    139  1.1  christos  * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
    140  1.1  christos  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
    141  1.1  christos  *
    142  1.1  christos  * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
    143  1.1  christos  * but unlike for ld128 we can't drop any terms.
    144  1.1  christos  */
    145  1.1  christos static const union ieee_ext_u
    146  1.1  christos B3 = LD80C(0xaaaaaaaaaaaaaaab, -3,  1.66666666666666666671e-1L),
    147  1.1  christos B4 = LD80C(0xaaaaaaaaaaaaaaac, -5,  4.16666666666666666712e-2L);
    148  1.1  christos 
    149  1.1  christos static const double
    150  1.1  christos B5  =  8.3333333333333245e-3,		/*  0x1.111111111110cp-7 */
    151  1.1  christos B6  =  1.3888888888888861e-3,		/*  0x1.6c16c16c16c0ap-10 */
    152  1.1  christos B7  =  1.9841269841532042e-4,		/*  0x1.a01a01a0319f9p-13 */
    153  1.1  christos B8  =  2.4801587302069236e-5,		/*  0x1.a01a01a03cbbcp-16 */
    154  1.1  christos B9  =  2.7557316558468562e-6,		/*  0x1.71de37fd33d67p-19 */
    155  1.1  christos B10 =  2.7557315829785151e-7,		/*  0x1.27e4f91418144p-22 */
    156  1.1  christos B11 =  2.5063168199779829e-8,		/*  0x1.ae94fabdc6b27p-26 */
    157  1.1  christos B12 =  2.0887164654459567e-9;		/*  0x1.1f122d6413fe1p-29 */
    158  1.1  christos 
    159  1.1  christos long double
    160  1.1  christos expm1l(long double x)
    161  1.1  christos {
    162  1.1  christos 	union ieee_ext_u u, v;
    163  1.1  christos 	long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
    164  1.1  christos 	long double x_lo, x2, z;
    165  1.1  christos 	long double x4;
    166  1.1  christos 	int k, n, n2;
    167  1.1  christos 	uint16_t hx, ix;
    168  1.1  christos 
    169  1.1  christos 	/* Filter out exceptional cases. */
    170  1.1  christos 	u.extu_ld = x;
    171  1.1  christos 	hx = GET_EXPSIGN(&u);
    172  1.1  christos 	ix = hx & 0x7fff;
    173  1.1  christos 	if (ix >= BIAS + 6) {		/* |x| >= 64 or x is NaN */
    174  1.1  christos 		if (ix == BIAS + LDBL_MAX_EXP) {
    175  1.1  christos 			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
    176  1.1  christos 				RETURNF(-1 / x - 1);
    177  1.1  christos 			RETURNF(x + x);	/* x is +Inf, +NaN or unsupported */
    178  1.1  christos 		}
    179  1.1  christos 		if (x > o_threshold)
    180  1.1  christos 			RETURNF(huge * huge);
    181  1.1  christos 		/*
    182  1.1  christos 		 * expm1l() never underflows, but it must avoid
    183  1.1  christos 		 * unrepresentable large negative exponents.  We used a
    184  1.1  christos 		 * much smaller threshold for large |x| above than in
    185  1.1  christos 		 * expl() so as to handle not so large negative exponents
    186  1.1  christos 		 * in the same way as large ones here.
    187  1.1  christos 		 */
    188  1.1  christos 		if (hx & 0x8000)	/* x <= -64 */
    189  1.1  christos 			RETURNF(tiny - 1);	/* good for x < -65ln2 - eps */
    190  1.1  christos 	}
    191  1.1  christos 
    192  1.1  christos 	ENTERI();
    193  1.1  christos 
    194  1.1  christos 	if (T1 < x && x < T2) {
    195  1.1  christos 		if (ix < BIAS - 74) {	/* |x| < 0x1p-74 (includes pseudos) */
    196  1.1  christos 			/* x (rounded) with inexact if x != 0: */
    197  1.1  christos 			RETURNI(x == 0 ? x :
    198  1.1  christos 			    (0x1p100 * x + fabsl(x)) * 0x1p-100);
    199  1.1  christos 		}
    200  1.1  christos 
    201  1.1  christos 		x2 = x * x;
    202  1.1  christos 		x4 = x2 * x2;
    203  1.1  christos 		q = x4 * (x2 * (x4 *
    204  1.1  christos 		    /*
    205  1.1  christos 		     * XXX the number of terms is no longer good for
    206  1.1  christos 		     * pairwise grouping of all except B3, and the
    207  1.1  christos 		     * grouping is no longer from highest down.
    208  1.1  christos 		     */
    209  1.1  christos 		    (x2 *            B12  + (x * B11 + B10)) +
    210  1.1  christos 		    (x2 * (x * B9 +  B8) +  (x * B7 +  B6))) +
    211  1.1  christos 			  (x * B5 +  B4.extu_ld)) + x2 * x * B3.extu_ld;
    212  1.1  christos 
    213  1.1  christos 		x_hi = (float)x;
    214  1.1  christos 		x_lo = x - x_hi;
    215  1.1  christos 		hx2_hi = x_hi * x_hi / 2;
    216  1.1  christos 		hx2_lo = x_lo * (x + x_hi) / 2;
    217  1.1  christos 		if (ix >= BIAS - 7)
    218  1.1  christos 			RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
    219  1.1  christos 		else
    220  1.1  christos 			RETURNI(x + (hx2_lo + q + hx2_hi));
    221  1.1  christos 	}
    222  1.1  christos 
    223  1.1  christos 	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
    224  1.1  christos 	fn = rnintl(x * INV_L);
    225  1.1  christos 	n = irint(fn);
    226  1.1  christos 	n2 = (unsigned)n % INTERVALS;
    227  1.1  christos 	k = n >> LOG2_INTERVALS;
    228  1.1  christos 	r1 = x - fn * L1;
    229  1.1  christos 	r2 = fn * -L2;
    230  1.1  christos 	r = r1 + r2;
    231  1.1  christos 
    232  1.1  christos 	/* Prepare scale factor. */
    233  1.1  christos 	v.extu_ld = 1;
    234  1.1  christos 	SET_EXPSIGN(&v, BIAS + k);
    235  1.1  christos 	twopk = v.extu_ld;
    236  1.1  christos 
    237  1.1  christos 	/*
    238  1.1  christos 	 * Evaluate lower terms of
    239  1.1  christos 	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
    240  1.1  christos 	 */
    241  1.1  christos 	z = r * r;
    242  1.1  christos 	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
    243  1.1  christos 
    244  1.1  christos 	t = (long double)tbl[n2].lo + tbl[n2].hi;
    245  1.1  christos 
    246  1.1  christos 	if (k == 0) {
    247  1.1  christos 		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
    248  1.1  christos 		    tbl[n2].hi * r1);
    249  1.1  christos 		RETURNI(t);
    250  1.1  christos 	}
    251  1.1  christos 	if (k == -1) {
    252  1.1  christos 		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
    253  1.1  christos 		    tbl[n2].hi * r1);
    254  1.1  christos 		RETURNI(t / 2);
    255  1.1  christos 	}
    256  1.1  christos 	if (k < -7) {
    257  1.1  christos 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
    258  1.1  christos 		RETURNI(t * twopk - 1);
    259  1.1  christos 	}
    260  1.1  christos 	if (k > 2 * LDBL_MANT_DIG - 1) {
    261  1.1  christos 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
    262  1.1  christos 		if (k == LDBL_MAX_EXP)
    263  1.1  christos 			RETURNI(t * 2 * 0x1p16383L - 1);
    264  1.1  christos 		RETURNI(t * twopk - 1);
    265  1.1  christos 	}
    266  1.1  christos 
    267  1.1  christos 	SET_EXPSIGN(&v, BIAS - k);
    268  1.1  christos 	twomk = v.extu_ld;
    269  1.1  christos 
    270  1.1  christos 	if (k > LDBL_MANT_DIG - 1)
    271  1.1  christos 		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
    272  1.1  christos 	else
    273  1.1  christos 		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
    274  1.1  christos 	RETURNI(t * twopk);
    275  1.1  christos }
    276