Home | History | Annotate | Line # | Download | only in ld80
s_expl.c revision 1.1
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause
      3  *
      4  * Copyright (c) 2009-2013 Steven G. Kargl
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice unmodified, this list of conditions, and the following
     12  *    disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * Optimized by Bruce D. Evans.
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 /**
     33  * Compute the exponential of x for Intel 80-bit format.  This is based on:
     34  *
     35  *   PTP Tang, "Table-driven implementation of the exponential function
     36  *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
     37  *   144-157 (1989).
     38  *
     39  * where the 32 table entries have been expanded to INTERVALS (see below).
     40  */
     41 
     42 #include <float.h>
     43 
     44 #ifdef __i386__
     45 #include <ieeefp.h>
     46 #endif
     47 
     48 #ifdef __FreeBSD__
     49 #include "fpmath.h"
     50 #endif
     51 #include "math.h"
     52 #include "math_private.h"
     53 #include "k_expl.h"
     54 
     55 /* XXX Prevent compilers from erroneously constant folding these: */
     56 static const volatile long double
     57 huge = 0x1p10000L,
     58 tiny = 0x1p-10000L;
     59 
     60 static const long double
     61 twom10000 = 0x1p-10000L;
     62 
     63 static const union ieee_ext_u
     64 /* log(2**16384 - 0.5) rounded towards zero: */
     65 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
     66 o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13,  11356.5234062941439488L),
     67 #define o_threshold	 (o_thresholdu.extu_ld)
     68 /* log(2**(-16381-64-1)) rounded towards zero: */
     69 u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
     70 #define u_threshold	 (u_thresholdu.extu_ld)
     71 
     72 long double
     73 expl(long double x)
     74 {
     75 	union ieee_ext_u u;
     76 	long double hi, lo, t, twopk;
     77 	int k;
     78 	uint16_t hx, ix;
     79 
     80 	/* Filter out exceptional cases. */
     81 	u.extu_ld = x;
     82 	hx = GET_EXPSIGN(&u);
     83 	ix = hx & 0x7fff;
     84 	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
     85 		if (ix == BIAS + LDBL_MAX_EXP) {
     86 			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
     87 				RETURNF(-1 / x);
     88 			RETURNF(x + x);	/* x is +Inf, +NaN or unsupported */
     89 		}
     90 		if (x > o_threshold)
     91 			RETURNF(huge * huge);
     92 		if (x < u_threshold)
     93 			RETURNF(tiny * tiny);
     94 	} else if (ix < BIAS - 75) {	/* |x| < 0x1p-75 (includes pseudos) */
     95 		RETURNF(1 + x);		/* 1 with inexact iff x != 0 */
     96 	}
     97 
     98 	ENTERI();
     99 
    100 	twopk = 1;
    101 	__k_expl(x, &hi, &lo, &k);
    102 	t = SUM2P(hi, lo);
    103 
    104 	/* Scale by 2**k. */
    105 	if (k >= LDBL_MIN_EXP) {
    106 		if (k == LDBL_MAX_EXP)
    107 			RETURNI(t * 2 * 0x1p16383L);
    108 		SET_LDBL_EXPSIGN(twopk, BIAS + k);
    109 		RETURNI(t * twopk);
    110 	} else {
    111 		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
    112 		RETURNI(t * twopk * twom10000);
    113 	}
    114 }
    115 
    116 /**
    117  * Compute expm1l(x) for Intel 80-bit format.  This is based on:
    118  *
    119  *   PTP Tang, "Table-driven implementation of the Expm1 function
    120  *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
    121  *   211-222 (1992).
    122  */
    123 
    124 /*
    125  * Our T1 and T2 are chosen to be approximately the points where method
    126  * A and method B have the same accuracy.  Tang's T1 and T2 are the
    127  * points where method A's accuracy changes by a full bit.  For Tang,
    128  * this drop in accuracy makes method A immediately less accurate than
    129  * method B, but our larger INTERVALS makes method A 2 bits more
    130  * accurate so it remains the most accurate method significantly
    131  * closer to the origin despite losing the full bit in our extended
    132  * range for it.
    133  */
    134 static const double
    135 T1 = -0.1659,				/* ~-30.625/128 * log(2) */
    136 T2 =  0.1659;				/* ~30.625/128 * log(2) */
    137 
    138 /*
    139  * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
    140  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
    141  *
    142  * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
    143  * but unlike for ld128 we can't drop any terms.
    144  */
    145 static const union ieee_ext_u
    146 B3 = LD80C(0xaaaaaaaaaaaaaaab, -3,  1.66666666666666666671e-1L),
    147 B4 = LD80C(0xaaaaaaaaaaaaaaac, -5,  4.16666666666666666712e-2L);
    148 
    149 static const double
    150 B5  =  8.3333333333333245e-3,		/*  0x1.111111111110cp-7 */
    151 B6  =  1.3888888888888861e-3,		/*  0x1.6c16c16c16c0ap-10 */
    152 B7  =  1.9841269841532042e-4,		/*  0x1.a01a01a0319f9p-13 */
    153 B8  =  2.4801587302069236e-5,		/*  0x1.a01a01a03cbbcp-16 */
    154 B9  =  2.7557316558468562e-6,		/*  0x1.71de37fd33d67p-19 */
    155 B10 =  2.7557315829785151e-7,		/*  0x1.27e4f91418144p-22 */
    156 B11 =  2.5063168199779829e-8,		/*  0x1.ae94fabdc6b27p-26 */
    157 B12 =  2.0887164654459567e-9;		/*  0x1.1f122d6413fe1p-29 */
    158 
    159 long double
    160 expm1l(long double x)
    161 {
    162 	union ieee_ext_u u, v;
    163 	long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
    164 	long double x_lo, x2, z;
    165 	long double x4;
    166 	int k, n, n2;
    167 	uint16_t hx, ix;
    168 
    169 	/* Filter out exceptional cases. */
    170 	u.extu_ld = x;
    171 	hx = GET_EXPSIGN(&u);
    172 	ix = hx & 0x7fff;
    173 	if (ix >= BIAS + 6) {		/* |x| >= 64 or x is NaN */
    174 		if (ix == BIAS + LDBL_MAX_EXP) {
    175 			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
    176 				RETURNF(-1 / x - 1);
    177 			RETURNF(x + x);	/* x is +Inf, +NaN or unsupported */
    178 		}
    179 		if (x > o_threshold)
    180 			RETURNF(huge * huge);
    181 		/*
    182 		 * expm1l() never underflows, but it must avoid
    183 		 * unrepresentable large negative exponents.  We used a
    184 		 * much smaller threshold for large |x| above than in
    185 		 * expl() so as to handle not so large negative exponents
    186 		 * in the same way as large ones here.
    187 		 */
    188 		if (hx & 0x8000)	/* x <= -64 */
    189 			RETURNF(tiny - 1);	/* good for x < -65ln2 - eps */
    190 	}
    191 
    192 	ENTERI();
    193 
    194 	if (T1 < x && x < T2) {
    195 		if (ix < BIAS - 74) {	/* |x| < 0x1p-74 (includes pseudos) */
    196 			/* x (rounded) with inexact if x != 0: */
    197 			RETURNI(x == 0 ? x :
    198 			    (0x1p100 * x + fabsl(x)) * 0x1p-100);
    199 		}
    200 
    201 		x2 = x * x;
    202 		x4 = x2 * x2;
    203 		q = x4 * (x2 * (x4 *
    204 		    /*
    205 		     * XXX the number of terms is no longer good for
    206 		     * pairwise grouping of all except B3, and the
    207 		     * grouping is no longer from highest down.
    208 		     */
    209 		    (x2 *            B12  + (x * B11 + B10)) +
    210 		    (x2 * (x * B9 +  B8) +  (x * B7 +  B6))) +
    211 			  (x * B5 +  B4.extu_ld)) + x2 * x * B3.extu_ld;
    212 
    213 		x_hi = (float)x;
    214 		x_lo = x - x_hi;
    215 		hx2_hi = x_hi * x_hi / 2;
    216 		hx2_lo = x_lo * (x + x_hi) / 2;
    217 		if (ix >= BIAS - 7)
    218 			RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
    219 		else
    220 			RETURNI(x + (hx2_lo + q + hx2_hi));
    221 	}
    222 
    223 	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
    224 	fn = rnintl(x * INV_L);
    225 	n = irint(fn);
    226 	n2 = (unsigned)n % INTERVALS;
    227 	k = n >> LOG2_INTERVALS;
    228 	r1 = x - fn * L1;
    229 	r2 = fn * -L2;
    230 	r = r1 + r2;
    231 
    232 	/* Prepare scale factor. */
    233 	v.extu_ld = 1;
    234 	SET_EXPSIGN(&v, BIAS + k);
    235 	twopk = v.extu_ld;
    236 
    237 	/*
    238 	 * Evaluate lower terms of
    239 	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
    240 	 */
    241 	z = r * r;
    242 	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
    243 
    244 	t = (long double)tbl[n2].lo + tbl[n2].hi;
    245 
    246 	if (k == 0) {
    247 		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
    248 		    tbl[n2].hi * r1);
    249 		RETURNI(t);
    250 	}
    251 	if (k == -1) {
    252 		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
    253 		    tbl[n2].hi * r1);
    254 		RETURNI(t / 2);
    255 	}
    256 	if (k < -7) {
    257 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
    258 		RETURNI(t * twopk - 1);
    259 	}
    260 	if (k > 2 * LDBL_MANT_DIG - 1) {
    261 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
    262 		if (k == LDBL_MAX_EXP)
    263 			RETURNI(t * 2 * 0x1p16383L - 1);
    264 		RETURNI(t * twopk - 1);
    265 	}
    266 
    267 	SET_EXPSIGN(&v, BIAS - k);
    268 	twomk = v.extu_ld;
    269 
    270 	if (k > LDBL_MANT_DIG - 1)
    271 		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
    272 	else
    273 		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
    274 	RETURNI(t * twopk);
    275 }
    276