s_expl.c revision 1.1 1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2009-2013 Steven G. Kargl
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Optimized by Bruce D. Evans.
29 */
30
31 #include <sys/cdefs.h>
32 /**
33 * Compute the exponential of x for Intel 80-bit format. This is based on:
34 *
35 * PTP Tang, "Table-driven implementation of the exponential function
36 * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
37 * 144-157 (1989).
38 *
39 * where the 32 table entries have been expanded to INTERVALS (see below).
40 */
41
42 #include <float.h>
43
44 #ifdef __i386__
45 #include <ieeefp.h>
46 #endif
47
48 #ifdef __FreeBSD__
49 #include "fpmath.h"
50 #endif
51 #include "math.h"
52 #include "math_private.h"
53 #include "k_expl.h"
54
55 /* XXX Prevent compilers from erroneously constant folding these: */
56 static const volatile long double
57 huge = 0x1p10000L,
58 tiny = 0x1p-10000L;
59
60 static const long double
61 twom10000 = 0x1p-10000L;
62
63 static const union ieee_ext_u
64 /* log(2**16384 - 0.5) rounded towards zero: */
65 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
66 o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
67 #define o_threshold (o_thresholdu.extu_ld)
68 /* log(2**(-16381-64-1)) rounded towards zero: */
69 u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
70 #define u_threshold (u_thresholdu.extu_ld)
71
72 long double
73 expl(long double x)
74 {
75 union ieee_ext_u u;
76 long double hi, lo, t, twopk;
77 int k;
78 uint16_t hx, ix;
79
80 /* Filter out exceptional cases. */
81 u.extu_ld = x;
82 hx = GET_EXPSIGN(&u);
83 ix = hx & 0x7fff;
84 if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
85 if (ix == BIAS + LDBL_MAX_EXP) {
86 if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
87 RETURNF(-1 / x);
88 RETURNF(x + x); /* x is +Inf, +NaN or unsupported */
89 }
90 if (x > o_threshold)
91 RETURNF(huge * huge);
92 if (x < u_threshold)
93 RETURNF(tiny * tiny);
94 } else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
95 RETURNF(1 + x); /* 1 with inexact iff x != 0 */
96 }
97
98 ENTERI();
99
100 twopk = 1;
101 __k_expl(x, &hi, &lo, &k);
102 t = SUM2P(hi, lo);
103
104 /* Scale by 2**k. */
105 if (k >= LDBL_MIN_EXP) {
106 if (k == LDBL_MAX_EXP)
107 RETURNI(t * 2 * 0x1p16383L);
108 SET_LDBL_EXPSIGN(twopk, BIAS + k);
109 RETURNI(t * twopk);
110 } else {
111 SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
112 RETURNI(t * twopk * twom10000);
113 }
114 }
115
116 /**
117 * Compute expm1l(x) for Intel 80-bit format. This is based on:
118 *
119 * PTP Tang, "Table-driven implementation of the Expm1 function
120 * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
121 * 211-222 (1992).
122 */
123
124 /*
125 * Our T1 and T2 are chosen to be approximately the points where method
126 * A and method B have the same accuracy. Tang's T1 and T2 are the
127 * points where method A's accuracy changes by a full bit. For Tang,
128 * this drop in accuracy makes method A immediately less accurate than
129 * method B, but our larger INTERVALS makes method A 2 bits more
130 * accurate so it remains the most accurate method significantly
131 * closer to the origin despite losing the full bit in our extended
132 * range for it.
133 */
134 static const double
135 T1 = -0.1659, /* ~-30.625/128 * log(2) */
136 T2 = 0.1659; /* ~30.625/128 * log(2) */
137
138 /*
139 * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
140 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
141 *
142 * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
143 * but unlike for ld128 we can't drop any terms.
144 */
145 static const union ieee_ext_u
146 B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
147 B4 = LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
148
149 static const double
150 B5 = 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
151 B6 = 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
152 B7 = 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
153 B8 = 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
154 B9 = 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
155 B10 = 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
156 B11 = 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
157 B12 = 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
158
159 long double
160 expm1l(long double x)
161 {
162 union ieee_ext_u u, v;
163 long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
164 long double x_lo, x2, z;
165 long double x4;
166 int k, n, n2;
167 uint16_t hx, ix;
168
169 /* Filter out exceptional cases. */
170 u.extu_ld = x;
171 hx = GET_EXPSIGN(&u);
172 ix = hx & 0x7fff;
173 if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
174 if (ix == BIAS + LDBL_MAX_EXP) {
175 if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
176 RETURNF(-1 / x - 1);
177 RETURNF(x + x); /* x is +Inf, +NaN or unsupported */
178 }
179 if (x > o_threshold)
180 RETURNF(huge * huge);
181 /*
182 * expm1l() never underflows, but it must avoid
183 * unrepresentable large negative exponents. We used a
184 * much smaller threshold for large |x| above than in
185 * expl() so as to handle not so large negative exponents
186 * in the same way as large ones here.
187 */
188 if (hx & 0x8000) /* x <= -64 */
189 RETURNF(tiny - 1); /* good for x < -65ln2 - eps */
190 }
191
192 ENTERI();
193
194 if (T1 < x && x < T2) {
195 if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
196 /* x (rounded) with inexact if x != 0: */
197 RETURNI(x == 0 ? x :
198 (0x1p100 * x + fabsl(x)) * 0x1p-100);
199 }
200
201 x2 = x * x;
202 x4 = x2 * x2;
203 q = x4 * (x2 * (x4 *
204 /*
205 * XXX the number of terms is no longer good for
206 * pairwise grouping of all except B3, and the
207 * grouping is no longer from highest down.
208 */
209 (x2 * B12 + (x * B11 + B10)) +
210 (x2 * (x * B9 + B8) + (x * B7 + B6))) +
211 (x * B5 + B4.extu_ld)) + x2 * x * B3.extu_ld;
212
213 x_hi = (float)x;
214 x_lo = x - x_hi;
215 hx2_hi = x_hi * x_hi / 2;
216 hx2_lo = x_lo * (x + x_hi) / 2;
217 if (ix >= BIAS - 7)
218 RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
219 else
220 RETURNI(x + (hx2_lo + q + hx2_hi));
221 }
222
223 /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
224 fn = rnintl(x * INV_L);
225 n = irint(fn);
226 n2 = (unsigned)n % INTERVALS;
227 k = n >> LOG2_INTERVALS;
228 r1 = x - fn * L1;
229 r2 = fn * -L2;
230 r = r1 + r2;
231
232 /* Prepare scale factor. */
233 v.extu_ld = 1;
234 SET_EXPSIGN(&v, BIAS + k);
235 twopk = v.extu_ld;
236
237 /*
238 * Evaluate lower terms of
239 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
240 */
241 z = r * r;
242 q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
243
244 t = (long double)tbl[n2].lo + tbl[n2].hi;
245
246 if (k == 0) {
247 t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
248 tbl[n2].hi * r1);
249 RETURNI(t);
250 }
251 if (k == -1) {
252 t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
253 tbl[n2].hi * r1);
254 RETURNI(t / 2);
255 }
256 if (k < -7) {
257 t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
258 RETURNI(t * twopk - 1);
259 }
260 if (k > 2 * LDBL_MANT_DIG - 1) {
261 t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
262 if (k == LDBL_MAX_EXP)
263 RETURNI(t * 2 * 0x1p16383L - 1);
264 RETURNI(t * twopk - 1);
265 }
266
267 SET_EXPSIGN(&v, BIAS - k);
268 twomk = v.extu_ld;
269
270 if (k > LDBL_MANT_DIG - 1)
271 t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
272 else
273 t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
274 RETURNI(t * twopk);
275 }
276