Home | History | Annotate | Line # | Download | only in noieee_src
n_atan2.c revision 1.3
      1  1.3  ragge /*      $NetBSD: n_atan2.c,v 1.3 1998/11/08 19:29:34 ragge Exp $        */
      2  1.1  ragge /*
      3  1.1  ragge  * Copyright (c) 1985, 1993
      4  1.1  ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1  ragge  *
      6  1.1  ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1  ragge  * modification, are permitted provided that the following conditions
      8  1.1  ragge  * are met:
      9  1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1  ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1  ragge  *    must display the following acknowledgement:
     16  1.1  ragge  *	This product includes software developed by the University of
     17  1.1  ragge  *	California, Berkeley and its contributors.
     18  1.1  ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1  ragge  *    may be used to endorse or promote products derived from this software
     20  1.1  ragge  *    without specific prior written permission.
     21  1.1  ragge  *
     22  1.1  ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1  ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1  ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1  ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1  ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1  ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1  ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1  ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1  ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1  ragge  * SUCH DAMAGE.
     33  1.1  ragge  */
     34  1.1  ragge 
     35  1.1  ragge #ifndef lint
     36  1.1  ragge static char sccsid[] = "@(#)atan2.c	8.1 (Berkeley) 6/4/93";
     37  1.1  ragge #endif /* not lint */
     38  1.1  ragge 
     39  1.1  ragge /* ATAN2(Y,X)
     40  1.1  ragge  * RETURN ARG (X+iY)
     41  1.1  ragge  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     42  1.1  ragge  * CODED IN C BY K.C. NG, 1/8/85;
     43  1.1  ragge  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
     44  1.1  ragge  *
     45  1.1  ragge  * Required system supported functions :
     46  1.1  ragge  *	copysign(x,y)
     47  1.1  ragge  *	scalb(x,y)
     48  1.1  ragge  *	logb(x)
     49  1.1  ragge  *
     50  1.1  ragge  * Method :
     51  1.1  ragge  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
     52  1.1  ragge  *	2. Reduce x to positive by (if x and y are unexceptional):
     53  1.1  ragge  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
     54  1.1  ragge  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
     55  1.1  ragge  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
     56  1.1  ragge  *	   is further reduced to one of the following intervals and the
     57  1.1  ragge  *	   arctangent of y/x is evaluated by the corresponding formula:
     58  1.1  ragge  *
     59  1.1  ragge  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
     60  1.1  ragge  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
     61  1.1  ragge  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
     62  1.1  ragge  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
     63  1.1  ragge  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
     64  1.1  ragge  *
     65  1.1  ragge  * Special cases:
     66  1.1  ragge  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
     67  1.1  ragge  *
     68  1.1  ragge  *	ARG( NAN , (anything) ) is NaN;
     69  1.1  ragge  *	ARG( (anything), NaN ) is NaN;
     70  1.1  ragge  *	ARG(+(anything but NaN), +-0) is +-0  ;
     71  1.1  ragge  *	ARG(-(anything but NaN), +-0) is +-PI ;
     72  1.1  ragge  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
     73  1.1  ragge  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
     74  1.1  ragge  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
     75  1.1  ragge  *	ARG( +INF,+-INF ) is +-PI/4 ;
     76  1.1  ragge  *	ARG( -INF,+-INF ) is +-3PI/4;
     77  1.1  ragge  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
     78  1.1  ragge  *
     79  1.1  ragge  * Accuracy:
     80  1.1  ragge  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
     81  1.1  ragge  *	where
     82  1.1  ragge  *
     83  1.1  ragge  *	in decimal:
     84  1.1  ragge  *		pi = 3.141592653589793 23846264338327 .....
     85  1.1  ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
     86  1.1  ragge  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
     87  1.1  ragge  *
     88  1.1  ragge  *	in hexadecimal:
     89  1.1  ragge  *		pi = 3.243F6A8885A308D313198A2E....
     90  1.1  ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
     91  1.1  ragge  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
     92  1.1  ragge  *
     93  1.1  ragge  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
     94  1.1  ragge  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
     95  1.1  ragge  *	compared with (PI/pi)*(the exact ARG(x+iy)).
     96  1.1  ragge  *
     97  1.1  ragge  * Note:
     98  1.1  ragge  *	We use machine PI (the true pi rounded) in place of the actual
     99  1.1  ragge  *	value of pi for all the trig and inverse trig functions. In general,
    100  1.1  ragge  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
    101  1.1  ragge  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
    102  1.1  ragge  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
    103  1.1  ragge  *	trig functions have period PI, and trig(arctrig(x)) returns x for
    104  1.1  ragge  *	all critical values x.
    105  1.1  ragge  *
    106  1.1  ragge  * Constants:
    107  1.1  ragge  * The hexadecimal values are the intended ones for the following constants.
    108  1.1  ragge  * The decimal values may be used, provided that the compiler will convert
    109  1.1  ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    110  1.1  ragge  * shown.
    111  1.1  ragge  */
    112  1.1  ragge 
    113  1.1  ragge #include "mathimpl.h"
    114  1.1  ragge 
    115  1.1  ragge vc(athfhi, 4.6364760900080611433E-1  ,6338,3fed,da7b,2b0d,  -1, .ED63382B0DDA7B)
    116  1.1  ragge vc(athflo, 1.9338828231967579916E-19 ,5005,2164,92c0,9cfe, -62, .E450059CFE92C0)
    117  1.1  ragge vc(PIo4,   7.8539816339744830676E-1  ,0fda,4049,68c2,a221,   0, .C90FDAA22168C2)
    118  1.1  ragge vc(at1fhi, 9.8279372324732906796E-1  ,985e,407b,b4d9,940f,   0, .FB985E940FB4D9)
    119  1.1  ragge vc(at1flo,-3.5540295636764633916E-18 ,1edc,a383,eaea,34d6, -57,-.831EDC34D6EAEA)
    120  1.1  ragge vc(PIo2,   1.5707963267948966135E0   ,0fda,40c9,68c2,a221,   1, .C90FDAA22168C2)
    121  1.1  ragge vc(PI,     3.1415926535897932270E0   ,0fda,4149,68c2,a221,   2, .C90FDAA22168C2)
    122  1.1  ragge vc(a1,     3.3333333333333473730E-1  ,aaaa,3faa,ab75,aaaa,  -1, .AAAAAAAAAAAB75)
    123  1.1  ragge vc(a2,    -2.0000000000017730678E-1  ,cccc,bf4c,946e,cccd,  -2,-.CCCCCCCCCD946E)
    124  1.1  ragge vc(a3,     1.4285714286694640301E-1  ,4924,3f12,4262,9274,  -2, .92492492744262)
    125  1.1  ragge vc(a4,    -1.1111111135032672795E-1  ,8e38,bee3,6292,ebc6,  -3,-.E38E38EBC66292)
    126  1.1  ragge vc(a5,     9.0909091380563043783E-2  ,2e8b,3eba,d70c,b31b,  -3, .BA2E8BB31BD70C)
    127  1.1  ragge vc(a6,    -7.6922954286089459397E-2  ,89c8,be9d,7f18,27c3,  -3,-.9D89C827C37F18)
    128  1.1  ragge vc(a7,     6.6663180891693915586E-2  ,86b4,3e88,9e58,ae37,  -3, .8886B4AE379E58)
    129  1.1  ragge vc(a8,    -5.8772703698290408927E-2  ,bba5,be70,a942,8481,  -4,-.F0BBA58481A942)
    130  1.1  ragge vc(a9,     5.2170707402812969804E-2  ,b0f3,3e55,13ab,a1ab,  -4, .D5B0F3A1AB13AB)
    131  1.1  ragge vc(a10,   -4.4895863157820361210E-2  ,e4b9,be37,048f,7fd1,  -4,-.B7E4B97FD1048F)
    132  1.1  ragge vc(a11,    3.3006147437343875094E-2  ,3174,3e07,2d87,3cf7,  -4, .8731743CF72D87)
    133  1.1  ragge vc(a12,   -1.4614844866464185439E-2  ,731a,bd6f,76d9,2f34,  -6,-.EF731A2F3476D9)
    134  1.1  ragge 
    135  1.1  ragge ic(athfhi, 4.6364760900080609352E-1  ,  -2,  1.DAC670561BB4F)
    136  1.1  ragge ic(athflo, 4.6249969567426939759E-18 , -58,  1.5543B8F253271)
    137  1.1  ragge ic(PIo4,   7.8539816339744827900E-1  ,  -1,  1.921FB54442D18)
    138  1.1  ragge ic(at1fhi, 9.8279372324732905408E-1  ,  -1,  1.F730BD281F69B)
    139  1.1  ragge ic(at1flo,-2.4407677060164810007E-17 , -56, -1.C23DFEFEAE6B5)
    140  1.1  ragge ic(PIo2,   1.5707963267948965580E0   ,   0,  1.921FB54442D18)
    141  1.1  ragge ic(PI,     3.1415926535897931160E0   ,   1,  1.921FB54442D18)
    142  1.1  ragge ic(a1,     3.3333333333333942106E-1  ,  -2,  1.55555555555C3)
    143  1.1  ragge ic(a2,    -1.9999999999979536924E-1  ,  -3, -1.9999999997CCD)
    144  1.1  ragge ic(a3,     1.4285714278004377209E-1  ,  -3,  1.24924921EC1D7)
    145  1.1  ragge ic(a4,    -1.1111110579344973814E-1  ,  -4, -1.C71C7059AF280)
    146  1.1  ragge ic(a5,     9.0908906105474668324E-2  ,  -4,  1.745CE5AA35DB2)
    147  1.1  ragge ic(a6,    -7.6919217767468239799E-2  ,  -4, -1.3B0FA54BEC400)
    148  1.1  ragge ic(a7,     6.6614695906082474486E-2  ,  -4,  1.10DA924597FFF)
    149  1.1  ragge ic(a8,    -5.8358371008508623523E-2  ,  -5, -1.DE125FDDBD793)
    150  1.1  ragge ic(a9,     4.9850617156082015213E-2  ,  -5,  1.9860524BDD807)
    151  1.1  ragge ic(a10,   -3.6700606902093604877E-2  ,  -5, -1.2CA6C04C6937A)
    152  1.1  ragge ic(a11,    1.6438029044759730479E-2  ,  -6,  1.0D52174A1BB54)
    153  1.1  ragge 
    154  1.1  ragge #ifdef vccast
    155  1.1  ragge #define	athfhi	vccast(athfhi)
    156  1.1  ragge #define	athflo	vccast(athflo)
    157  1.1  ragge #define	PIo4	vccast(PIo4)
    158  1.1  ragge #define	at1fhi	vccast(at1fhi)
    159  1.1  ragge #define	at1flo	vccast(at1flo)
    160  1.1  ragge #define	PIo2	vccast(PIo2)
    161  1.1  ragge #define	PI	vccast(PI)
    162  1.1  ragge #define	a1	vccast(a1)
    163  1.1  ragge #define	a2	vccast(a2)
    164  1.1  ragge #define	a3	vccast(a3)
    165  1.1  ragge #define	a4	vccast(a4)
    166  1.1  ragge #define	a5	vccast(a5)
    167  1.1  ragge #define	a6	vccast(a6)
    168  1.1  ragge #define	a7	vccast(a7)
    169  1.1  ragge #define	a8	vccast(a8)
    170  1.1  ragge #define	a9	vccast(a9)
    171  1.1  ragge #define	a10	vccast(a10)
    172  1.1  ragge #define	a11	vccast(a11)
    173  1.1  ragge #define	a12	vccast(a12)
    174  1.1  ragge #endif
    175  1.1  ragge 
    176  1.1  ragge double atan2(y,x)
    177  1.1  ragge double  y,x;
    178  1.1  ragge {
    179  1.1  ragge 	static const double zero=0, one=1, small=1.0E-9, big=1.0E18;
    180  1.1  ragge 	double t,z,signy,signx,hi,lo;
    181  1.1  ragge 	int k,m;
    182  1.1  ragge 
    183  1.2   matt #if !defined(__vax__)&&!defined(tahoe)
    184  1.1  ragge     /* if x or y is NAN */
    185  1.1  ragge 	if(x!=x) return(x); if(y!=y) return(y);
    186  1.2   matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    187  1.1  ragge 
    188  1.1  ragge     /* copy down the sign of y and x */
    189  1.1  ragge 	signy = copysign(one,y) ;
    190  1.1  ragge 	signx = copysign(one,x) ;
    191  1.1  ragge 
    192  1.1  ragge     /* if x is 1.0, goto begin */
    193  1.1  ragge 	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
    194  1.1  ragge 
    195  1.1  ragge     /* when y = 0 */
    196  1.1  ragge 	if(y==zero) return((signx==one)?y:copysign(PI,signy));
    197  1.1  ragge 
    198  1.1  ragge     /* when x = 0 */
    199  1.1  ragge 	if(x==zero) return(copysign(PIo2,signy));
    200  1.1  ragge 
    201  1.1  ragge     /* when x is INF */
    202  1.1  ragge 	if(!finite(x))
    203  1.1  ragge 	    if(!finite(y))
    204  1.1  ragge 		return(copysign((signx==one)?PIo4:3*PIo4,signy));
    205  1.1  ragge 	    else
    206  1.1  ragge 		return(copysign((signx==one)?zero:PI,signy));
    207  1.1  ragge 
    208  1.1  ragge     /* when y is INF */
    209  1.1  ragge 	if(!finite(y)) return(copysign(PIo2,signy));
    210  1.1  ragge 
    211  1.1  ragge     /* compute y/x */
    212  1.1  ragge 	x=copysign(x,one);
    213  1.1  ragge 	y=copysign(y,one);
    214  1.1  ragge 	if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
    215  1.1  ragge 	    else if(m < -80 ) t=y/x;
    216  1.1  ragge 	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
    217  1.1  ragge 
    218  1.1  ragge     /* begin argument reduction */
    219  1.1  ragge begin:
    220  1.1  ragge 	if (t < 2.4375) {
    221  1.1  ragge 
    222  1.1  ragge 	/* truncate 4(t+1/16) to integer for branching */
    223  1.1  ragge 	    k = 4 * (t+0.0625);
    224  1.1  ragge 	    switch (k) {
    225  1.1  ragge 
    226  1.1  ragge 	    /* t is in [0,7/16] */
    227  1.1  ragge 	    case 0:
    228  1.1  ragge 	    case 1:
    229  1.1  ragge 		if (t < small)
    230  1.1  ragge 		    { big + small ;  /* raise inexact flag */
    231  1.1  ragge 		      return (copysign((signx>zero)?t:PI-t,signy)); }
    232  1.1  ragge 
    233  1.1  ragge 		hi = zero;  lo = zero;  break;
    234  1.1  ragge 
    235  1.1  ragge 	    /* t is in [7/16,11/16] */
    236  1.1  ragge 	    case 2:
    237  1.1  ragge 		hi = athfhi; lo = athflo;
    238  1.1  ragge 		z = x+x;
    239  1.1  ragge 		t = ( (y+y) - x ) / ( z +  y ); break;
    240  1.1  ragge 
    241  1.1  ragge 	    /* t is in [11/16,19/16] */
    242  1.1  ragge 	    case 3:
    243  1.1  ragge 	    case 4:
    244  1.1  ragge 		hi = PIo4; lo = zero;
    245  1.1  ragge 		t = ( y - x ) / ( x + y ); break;
    246  1.1  ragge 
    247  1.1  ragge 	    /* t is in [19/16,39/16] */
    248  1.1  ragge 	    default:
    249  1.1  ragge 		hi = at1fhi; lo = at1flo;
    250  1.1  ragge 		z = y-x; y=y+y+y; t = x+x;
    251  1.1  ragge 		t = ( (z+z)-x ) / ( t + y ); break;
    252  1.1  ragge 	    }
    253  1.1  ragge 	}
    254  1.1  ragge 	/* end of if (t < 2.4375) */
    255  1.1  ragge 
    256  1.1  ragge 	else
    257  1.1  ragge 	{
    258  1.1  ragge 	    hi = PIo2; lo = zero;
    259  1.1  ragge 
    260  1.1  ragge 	    /* t is in [2.4375, big] */
    261  1.1  ragge 	    if (t <= big)  t = - x / y;
    262  1.1  ragge 
    263  1.1  ragge 	    /* t is in [big, INF] */
    264  1.1  ragge 	    else
    265  1.1  ragge 	      { big+small;	/* raise inexact flag */
    266  1.1  ragge 		t = zero; }
    267  1.1  ragge 	}
    268  1.1  ragge     /* end of argument reduction */
    269  1.1  ragge 
    270  1.1  ragge     /* compute atan(t) for t in [-.4375, .4375] */
    271  1.1  ragge 	z = t*t;
    272  1.3  ragge #if defined(__vax__)||defined(tahoe)
    273  1.1  ragge 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
    274  1.1  ragge 			z*(a9+z*(a10+z*(a11+z*a12))))))))))));
    275  1.3  ragge #else	/* defined(__vax__)||defined(tahoe) */
    276  1.1  ragge 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
    277  1.1  ragge 			z*(a9+z*(a10+z*a11)))))))))));
    278  1.3  ragge #endif	/* defined(__vax__)||defined(tahoe) */
    279  1.1  ragge 	z = lo - z; z += t; z += hi;
    280  1.1  ragge 
    281  1.1  ragge 	return(copysign((signx>zero)?z:PI-z,signy));
    282  1.1  ragge }
    283