Home | History | Annotate | Line # | Download | only in noieee_src
n_atan2.c revision 1.1
      1 /*      $NetBSD: n_atan2.c,v 1.1 1995/10/10 23:36:37 ragge Exp $        */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)atan2.c	8.1 (Berkeley) 6/4/93";
     37 #endif /* not lint */
     38 
     39 /* ATAN2(Y,X)
     40  * RETURN ARG (X+iY)
     41  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     42  * CODED IN C BY K.C. NG, 1/8/85;
     43  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
     44  *
     45  * Required system supported functions :
     46  *	copysign(x,y)
     47  *	scalb(x,y)
     48  *	logb(x)
     49  *
     50  * Method :
     51  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
     52  *	2. Reduce x to positive by (if x and y are unexceptional):
     53  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
     54  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
     55  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
     56  *	   is further reduced to one of the following intervals and the
     57  *	   arctangent of y/x is evaluated by the corresponding formula:
     58  *
     59  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
     60  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
     61  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
     62  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
     63  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
     64  *
     65  * Special cases:
     66  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
     67  *
     68  *	ARG( NAN , (anything) ) is NaN;
     69  *	ARG( (anything), NaN ) is NaN;
     70  *	ARG(+(anything but NaN), +-0) is +-0  ;
     71  *	ARG(-(anything but NaN), +-0) is +-PI ;
     72  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
     73  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
     74  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
     75  *	ARG( +INF,+-INF ) is +-PI/4 ;
     76  *	ARG( -INF,+-INF ) is +-3PI/4;
     77  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
     78  *
     79  * Accuracy:
     80  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
     81  *	where
     82  *
     83  *	in decimal:
     84  *		pi = 3.141592653589793 23846264338327 .....
     85  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
     86  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
     87  *
     88  *	in hexadecimal:
     89  *		pi = 3.243F6A8885A308D313198A2E....
     90  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
     91  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
     92  *
     93  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
     94  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
     95  *	compared with (PI/pi)*(the exact ARG(x+iy)).
     96  *
     97  * Note:
     98  *	We use machine PI (the true pi rounded) in place of the actual
     99  *	value of pi for all the trig and inverse trig functions. In general,
    100  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
    101  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
    102  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
    103  *	trig functions have period PI, and trig(arctrig(x)) returns x for
    104  *	all critical values x.
    105  *
    106  * Constants:
    107  * The hexadecimal values are the intended ones for the following constants.
    108  * The decimal values may be used, provided that the compiler will convert
    109  * from decimal to binary accurately enough to produce the hexadecimal values
    110  * shown.
    111  */
    112 
    113 #include "mathimpl.h"
    114 
    115 vc(athfhi, 4.6364760900080611433E-1  ,6338,3fed,da7b,2b0d,  -1, .ED63382B0DDA7B)
    116 vc(athflo, 1.9338828231967579916E-19 ,5005,2164,92c0,9cfe, -62, .E450059CFE92C0)
    117 vc(PIo4,   7.8539816339744830676E-1  ,0fda,4049,68c2,a221,   0, .C90FDAA22168C2)
    118 vc(at1fhi, 9.8279372324732906796E-1  ,985e,407b,b4d9,940f,   0, .FB985E940FB4D9)
    119 vc(at1flo,-3.5540295636764633916E-18 ,1edc,a383,eaea,34d6, -57,-.831EDC34D6EAEA)
    120 vc(PIo2,   1.5707963267948966135E0   ,0fda,40c9,68c2,a221,   1, .C90FDAA22168C2)
    121 vc(PI,     3.1415926535897932270E0   ,0fda,4149,68c2,a221,   2, .C90FDAA22168C2)
    122 vc(a1,     3.3333333333333473730E-1  ,aaaa,3faa,ab75,aaaa,  -1, .AAAAAAAAAAAB75)
    123 vc(a2,    -2.0000000000017730678E-1  ,cccc,bf4c,946e,cccd,  -2,-.CCCCCCCCCD946E)
    124 vc(a3,     1.4285714286694640301E-1  ,4924,3f12,4262,9274,  -2, .92492492744262)
    125 vc(a4,    -1.1111111135032672795E-1  ,8e38,bee3,6292,ebc6,  -3,-.E38E38EBC66292)
    126 vc(a5,     9.0909091380563043783E-2  ,2e8b,3eba,d70c,b31b,  -3, .BA2E8BB31BD70C)
    127 vc(a6,    -7.6922954286089459397E-2  ,89c8,be9d,7f18,27c3,  -3,-.9D89C827C37F18)
    128 vc(a7,     6.6663180891693915586E-2  ,86b4,3e88,9e58,ae37,  -3, .8886B4AE379E58)
    129 vc(a8,    -5.8772703698290408927E-2  ,bba5,be70,a942,8481,  -4,-.F0BBA58481A942)
    130 vc(a9,     5.2170707402812969804E-2  ,b0f3,3e55,13ab,a1ab,  -4, .D5B0F3A1AB13AB)
    131 vc(a10,   -4.4895863157820361210E-2  ,e4b9,be37,048f,7fd1,  -4,-.B7E4B97FD1048F)
    132 vc(a11,    3.3006147437343875094E-2  ,3174,3e07,2d87,3cf7,  -4, .8731743CF72D87)
    133 vc(a12,   -1.4614844866464185439E-2  ,731a,bd6f,76d9,2f34,  -6,-.EF731A2F3476D9)
    134 
    135 ic(athfhi, 4.6364760900080609352E-1  ,  -2,  1.DAC670561BB4F)
    136 ic(athflo, 4.6249969567426939759E-18 , -58,  1.5543B8F253271)
    137 ic(PIo4,   7.8539816339744827900E-1  ,  -1,  1.921FB54442D18)
    138 ic(at1fhi, 9.8279372324732905408E-1  ,  -1,  1.F730BD281F69B)
    139 ic(at1flo,-2.4407677060164810007E-17 , -56, -1.C23DFEFEAE6B5)
    140 ic(PIo2,   1.5707963267948965580E0   ,   0,  1.921FB54442D18)
    141 ic(PI,     3.1415926535897931160E0   ,   1,  1.921FB54442D18)
    142 ic(a1,     3.3333333333333942106E-1  ,  -2,  1.55555555555C3)
    143 ic(a2,    -1.9999999999979536924E-1  ,  -3, -1.9999999997CCD)
    144 ic(a3,     1.4285714278004377209E-1  ,  -3,  1.24924921EC1D7)
    145 ic(a4,    -1.1111110579344973814E-1  ,  -4, -1.C71C7059AF280)
    146 ic(a5,     9.0908906105474668324E-2  ,  -4,  1.745CE5AA35DB2)
    147 ic(a6,    -7.6919217767468239799E-2  ,  -4, -1.3B0FA54BEC400)
    148 ic(a7,     6.6614695906082474486E-2  ,  -4,  1.10DA924597FFF)
    149 ic(a8,    -5.8358371008508623523E-2  ,  -5, -1.DE125FDDBD793)
    150 ic(a9,     4.9850617156082015213E-2  ,  -5,  1.9860524BDD807)
    151 ic(a10,   -3.6700606902093604877E-2  ,  -5, -1.2CA6C04C6937A)
    152 ic(a11,    1.6438029044759730479E-2  ,  -6,  1.0D52174A1BB54)
    153 
    154 #ifdef vccast
    155 #define	athfhi	vccast(athfhi)
    156 #define	athflo	vccast(athflo)
    157 #define	PIo4	vccast(PIo4)
    158 #define	at1fhi	vccast(at1fhi)
    159 #define	at1flo	vccast(at1flo)
    160 #define	PIo2	vccast(PIo2)
    161 #define	PI	vccast(PI)
    162 #define	a1	vccast(a1)
    163 #define	a2	vccast(a2)
    164 #define	a3	vccast(a3)
    165 #define	a4	vccast(a4)
    166 #define	a5	vccast(a5)
    167 #define	a6	vccast(a6)
    168 #define	a7	vccast(a7)
    169 #define	a8	vccast(a8)
    170 #define	a9	vccast(a9)
    171 #define	a10	vccast(a10)
    172 #define	a11	vccast(a11)
    173 #define	a12	vccast(a12)
    174 #endif
    175 
    176 double atan2(y,x)
    177 double  y,x;
    178 {
    179 	static const double zero=0, one=1, small=1.0E-9, big=1.0E18;
    180 	double t,z,signy,signx,hi,lo;
    181 	int k,m;
    182 
    183 #if !defined(vax)&&!defined(tahoe)
    184     /* if x or y is NAN */
    185 	if(x!=x) return(x); if(y!=y) return(y);
    186 #endif	/* !defined(vax)&&!defined(tahoe) */
    187 
    188     /* copy down the sign of y and x */
    189 	signy = copysign(one,y) ;
    190 	signx = copysign(one,x) ;
    191 
    192     /* if x is 1.0, goto begin */
    193 	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
    194 
    195     /* when y = 0 */
    196 	if(y==zero) return((signx==one)?y:copysign(PI,signy));
    197 
    198     /* when x = 0 */
    199 	if(x==zero) return(copysign(PIo2,signy));
    200 
    201     /* when x is INF */
    202 	if(!finite(x))
    203 	    if(!finite(y))
    204 		return(copysign((signx==one)?PIo4:3*PIo4,signy));
    205 	    else
    206 		return(copysign((signx==one)?zero:PI,signy));
    207 
    208     /* when y is INF */
    209 	if(!finite(y)) return(copysign(PIo2,signy));
    210 
    211     /* compute y/x */
    212 	x=copysign(x,one);
    213 	y=copysign(y,one);
    214 	if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
    215 	    else if(m < -80 ) t=y/x;
    216 	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
    217 
    218     /* begin argument reduction */
    219 begin:
    220 	if (t < 2.4375) {
    221 
    222 	/* truncate 4(t+1/16) to integer for branching */
    223 	    k = 4 * (t+0.0625);
    224 	    switch (k) {
    225 
    226 	    /* t is in [0,7/16] */
    227 	    case 0:
    228 	    case 1:
    229 		if (t < small)
    230 		    { big + small ;  /* raise inexact flag */
    231 		      return (copysign((signx>zero)?t:PI-t,signy)); }
    232 
    233 		hi = zero;  lo = zero;  break;
    234 
    235 	    /* t is in [7/16,11/16] */
    236 	    case 2:
    237 		hi = athfhi; lo = athflo;
    238 		z = x+x;
    239 		t = ( (y+y) - x ) / ( z +  y ); break;
    240 
    241 	    /* t is in [11/16,19/16] */
    242 	    case 3:
    243 	    case 4:
    244 		hi = PIo4; lo = zero;
    245 		t = ( y - x ) / ( x + y ); break;
    246 
    247 	    /* t is in [19/16,39/16] */
    248 	    default:
    249 		hi = at1fhi; lo = at1flo;
    250 		z = y-x; y=y+y+y; t = x+x;
    251 		t = ( (z+z)-x ) / ( t + y ); break;
    252 	    }
    253 	}
    254 	/* end of if (t < 2.4375) */
    255 
    256 	else
    257 	{
    258 	    hi = PIo2; lo = zero;
    259 
    260 	    /* t is in [2.4375, big] */
    261 	    if (t <= big)  t = - x / y;
    262 
    263 	    /* t is in [big, INF] */
    264 	    else
    265 	      { big+small;	/* raise inexact flag */
    266 		t = zero; }
    267 	}
    268     /* end of argument reduction */
    269 
    270     /* compute atan(t) for t in [-.4375, .4375] */
    271 	z = t*t;
    272 #if defined(vax)||defined(tahoe)
    273 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
    274 			z*(a9+z*(a10+z*(a11+z*a12))))))))))));
    275 #else	/* defined(vax)||defined(tahoe) */
    276 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
    277 			z*(a9+z*(a10+z*a11)))))))))));
    278 #endif	/* defined(vax)||defined(tahoe) */
    279 	z = lo - z; z += t; z += hi;
    280 
    281 	return(copysign((signx>zero)?z:PI-z,signy));
    282 }
    283