1 1.5 agc /* $NetBSD: n_cabs.c,v 1.5 2003/08/07 16:44:50 agc Exp $ */ 2 1.1 ragge /* 3 1.1 ragge * Copyright (c) 1985, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.5 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge */ 30 1.1 ragge 31 1.1 ragge #ifndef lint 32 1.1 ragge static char sccsid[] = "@(#)cabs.c 8.1 (Berkeley) 6/4/93"; 33 1.1 ragge #endif /* not lint */ 34 1.1 ragge 35 1.1 ragge /* HYPOT(X,Y) 36 1.1 ragge * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY 37 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 38 1.3 simonb * CODED IN C BY K.C. NG, 11/28/84; 39 1.1 ragge * REVISED BY K.C. NG, 7/12/85. 40 1.1 ragge * 41 1.1 ragge * Required system supported functions : 42 1.1 ragge * copysign(x,y) 43 1.1 ragge * finite(x) 44 1.1 ragge * scalb(x,N) 45 1.1 ragge * sqrt(x) 46 1.1 ragge * 47 1.1 ragge * Method : 48 1.1 ragge * 1. replace x by |x| and y by |y|, and swap x and 49 1.1 ragge * y if y > x (hence x is never smaller than y). 50 1.1 ragge * 2. Hypot(x,y) is computed by: 51 1.1 ragge * Case I, x/y > 2 52 1.3 simonb * 53 1.1 ragge * y 54 1.1 ragge * hypot = x + ----------------------------- 55 1.1 ragge * 2 56 1.1 ragge * sqrt ( 1 + [x/y] ) + x/y 57 1.1 ragge * 58 1.3 simonb * Case II, x/y <= 2 59 1.1 ragge * y 60 1.1 ragge * hypot = x + -------------------------------------------------- 61 1.3 simonb * 2 62 1.1 ragge * [x/y] - 2 63 1.1 ragge * (sqrt(2)+1) + (x-y)/y + ----------------------------- 64 1.1 ragge * 2 65 1.1 ragge * sqrt ( 1 + [x/y] ) + sqrt(2) 66 1.1 ragge * 67 1.1 ragge * 68 1.1 ragge * 69 1.1 ragge * Special cases: 70 1.1 ragge * hypot(x,y) is INF if x or y is +INF or -INF; else 71 1.1 ragge * hypot(x,y) is NAN if x or y is NAN. 72 1.1 ragge * 73 1.1 ragge * Accuracy: 74 1.1 ragge * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units 75 1.1 ragge * in the last place). See Kahan's "Interval Arithmetic Options in the 76 1.1 ragge * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics 77 1.1 ragge * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate 78 1.1 ragge * code follows in comments.) In a test run with 500,000 random arguments 79 1.1 ragge * on a VAX, the maximum observed error was .959 ulps. 80 1.1 ragge * 81 1.1 ragge * Constants: 82 1.1 ragge * The hexadecimal values are the intended ones for the following constants. 83 1.1 ragge * The decimal values may be used, provided that the compiler will convert 84 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values 85 1.1 ragge * shown. 86 1.1 ragge */ 87 1.4 matt #define _LIBM_STATIC 88 1.1 ragge #include "mathimpl.h" 89 1.1 ragge 90 1.1 ragge vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32) 91 1.1 ragge vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B) 92 1.1 ragge vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65) 93 1.1 ragge 94 1.1 ragge ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6) 95 1.1 ragge ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5) 96 1.1 ragge ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD) 97 1.1 ragge 98 1.1 ragge #ifdef vccast 99 1.1 ragge #define r2p1hi vccast(r2p1hi) 100 1.1 ragge #define r2p1lo vccast(r2p1lo) 101 1.1 ragge #define sqrt2 vccast(sqrt2) 102 1.1 ragge #endif 103 1.1 ragge 104 1.1 ragge double 105 1.4 matt hypot(double x, double y) 106 1.1 ragge { 107 1.3 simonb static const double zero=0, one=1, 108 1.1 ragge small=1.0E-18; /* fl(1+small)==1 */ 109 1.1 ragge static const ibig=30; /* fl(1+2**(2*ibig))==1 */ 110 1.1 ragge double t,r; 111 1.1 ragge int exp; 112 1.1 ragge 113 1.1 ragge if(finite(x)) 114 1.1 ragge if(finite(y)) 115 1.3 simonb { 116 1.1 ragge x=copysign(x,one); 117 1.1 ragge y=copysign(y,one); 118 1.3 simonb if(y > x) 119 1.1 ragge { t=x; x=y; y=t; } 120 1.1 ragge if(x == zero) return(zero); 121 1.1 ragge if(y == zero) return(x); 122 1.1 ragge exp= logb(x); 123 1.3 simonb if(exp-(int)logb(y) > ibig ) 124 1.1 ragge /* raise inexact flag and return |x| */ 125 1.1 ragge { one+small; return(x); } 126 1.1 ragge 127 1.1 ragge /* start computing sqrt(x^2 + y^2) */ 128 1.1 ragge r=x-y; 129 1.1 ragge if(r>y) { /* x/y > 2 */ 130 1.1 ragge r=x/y; 131 1.1 ragge r=r+sqrt(one+r*r); } 132 1.1 ragge else { /* 1 <= x/y <= 2 */ 133 1.1 ragge r/=y; t=r*(r+2.0); 134 1.1 ragge r+=t/(sqrt2+sqrt(2.0+t)); 135 1.1 ragge r+=r2p1lo; r+=r2p1hi; } 136 1.1 ragge 137 1.1 ragge r=y/r; 138 1.1 ragge return(x+r); 139 1.1 ragge 140 1.1 ragge } 141 1.1 ragge 142 1.1 ragge else if(y==y) /* y is +-INF */ 143 1.1 ragge return(copysign(y,one)); 144 1.3 simonb else 145 1.1 ragge return(y); /* y is NaN and x is finite */ 146 1.1 ragge 147 1.1 ragge else if(x==x) /* x is +-INF */ 148 1.1 ragge return (copysign(x,one)); 149 1.1 ragge else if(finite(y)) 150 1.1 ragge return(x); /* x is NaN, y is finite */ 151 1.2 matt #if !defined(__vax__)&&!defined(tahoe) 152 1.1 ragge else if(y!=y) return(y); /* x and y is NaN */ 153 1.2 matt #endif /* !defined(__vax__)&&!defined(tahoe) */ 154 1.1 ragge else return(copysign(y,one)); /* y is INF */ 155 1.1 ragge } 156 1.1 ragge 157 1.1 ragge /* CABS(Z) 158 1.1 ragge * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY 159 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 160 1.1 ragge * CODED IN C BY K.C. NG, 11/28/84. 161 1.1 ragge * REVISED BY K.C. NG, 7/12/85. 162 1.1 ragge * 163 1.1 ragge * Required kernel function : 164 1.1 ragge * hypot(x,y) 165 1.1 ragge * 166 1.1 ragge * Method : 167 1.1 ragge * cabs(z) = hypot(x,y) . 168 1.1 ragge */ 169 1.1 ragge 170 1.1 ragge struct complex { double x, y; }; 171 1.1 ragge 172 1.1 ragge double 173 1.1 ragge cabs(z) 174 1.1 ragge struct complex z; 175 1.1 ragge { 176 1.1 ragge return hypot(z.x,z.y); 177 1.1 ragge } 178 1.1 ragge 179 1.1 ragge double 180 1.1 ragge z_abs(z) 181 1.1 ragge struct complex *z; 182 1.1 ragge { 183 1.1 ragge return hypot(z->x,z->y); 184 1.1 ragge } 185 1.1 ragge 186 1.1 ragge /* A faster but less accurate version of cabs(x,y) */ 187 1.1 ragge #if 0 188 1.1 ragge double hypot(x,y) 189 1.1 ragge double x, y; 190 1.1 ragge { 191 1.1 ragge static const double zero=0, one=1; 192 1.1 ragge small=1.0E-18; /* fl(1+small)==1 */ 193 1.1 ragge static const ibig=30; /* fl(1+2**(2*ibig))==1 */ 194 1.1 ragge double temp; 195 1.1 ragge int exp; 196 1.1 ragge 197 1.1 ragge if(finite(x)) 198 1.1 ragge if(finite(y)) 199 1.3 simonb { 200 1.1 ragge x=copysign(x,one); 201 1.1 ragge y=copysign(y,one); 202 1.3 simonb if(y > x) 203 1.1 ragge { temp=x; x=y; y=temp; } 204 1.1 ragge if(x == zero) return(zero); 205 1.1 ragge if(y == zero) return(x); 206 1.1 ragge exp= logb(x); 207 1.1 ragge x=scalb(x,-exp); 208 1.3 simonb if(exp-(int)logb(y) > ibig ) 209 1.1 ragge /* raise inexact flag and return |x| */ 210 1.1 ragge { one+small; return(scalb(x,exp)); } 211 1.1 ragge else y=scalb(y,-exp); 212 1.1 ragge return(scalb(sqrt(x*x+y*y),exp)); 213 1.1 ragge } 214 1.1 ragge 215 1.1 ragge else if(y==y) /* y is +-INF */ 216 1.1 ragge return(copysign(y,one)); 217 1.3 simonb else 218 1.1 ragge return(y); /* y is NaN and x is finite */ 219 1.1 ragge 220 1.1 ragge else if(x==x) /* x is +-INF */ 221 1.1 ragge return (copysign(x,one)); 222 1.1 ragge else if(finite(y)) 223 1.1 ragge return(x); /* x is NaN, y is finite */ 224 1.1 ragge else if(y!=y) return(y); /* x and y is NaN */ 225 1.1 ragge else return(copysign(y,one)); /* y is INF */ 226 1.1 ragge } 227 1.1 ragge #endif 228