n_cabs.c revision 1.3 1 1.3 simonb /* $NetBSD: n_cabs.c,v 1.3 1999/07/02 15:37:36 simonb Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.1 ragge static char sccsid[] = "@(#)cabs.c 8.1 (Berkeley) 6/4/93";
37 1.1 ragge #endif /* not lint */
38 1.1 ragge
39 1.1 ragge /* HYPOT(X,Y)
40 1.1 ragge * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
41 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
42 1.3 simonb * CODED IN C BY K.C. NG, 11/28/84;
43 1.1 ragge * REVISED BY K.C. NG, 7/12/85.
44 1.1 ragge *
45 1.1 ragge * Required system supported functions :
46 1.1 ragge * copysign(x,y)
47 1.1 ragge * finite(x)
48 1.1 ragge * scalb(x,N)
49 1.1 ragge * sqrt(x)
50 1.1 ragge *
51 1.1 ragge * Method :
52 1.1 ragge * 1. replace x by |x| and y by |y|, and swap x and
53 1.1 ragge * y if y > x (hence x is never smaller than y).
54 1.1 ragge * 2. Hypot(x,y) is computed by:
55 1.1 ragge * Case I, x/y > 2
56 1.3 simonb *
57 1.1 ragge * y
58 1.1 ragge * hypot = x + -----------------------------
59 1.1 ragge * 2
60 1.1 ragge * sqrt ( 1 + [x/y] ) + x/y
61 1.1 ragge *
62 1.3 simonb * Case II, x/y <= 2
63 1.1 ragge * y
64 1.1 ragge * hypot = x + --------------------------------------------------
65 1.3 simonb * 2
66 1.1 ragge * [x/y] - 2
67 1.1 ragge * (sqrt(2)+1) + (x-y)/y + -----------------------------
68 1.1 ragge * 2
69 1.1 ragge * sqrt ( 1 + [x/y] ) + sqrt(2)
70 1.1 ragge *
71 1.1 ragge *
72 1.1 ragge *
73 1.1 ragge * Special cases:
74 1.1 ragge * hypot(x,y) is INF if x or y is +INF or -INF; else
75 1.1 ragge * hypot(x,y) is NAN if x or y is NAN.
76 1.1 ragge *
77 1.1 ragge * Accuracy:
78 1.1 ragge * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
79 1.1 ragge * in the last place). See Kahan's "Interval Arithmetic Options in the
80 1.1 ragge * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
81 1.1 ragge * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
82 1.1 ragge * code follows in comments.) In a test run with 500,000 random arguments
83 1.1 ragge * on a VAX, the maximum observed error was .959 ulps.
84 1.1 ragge *
85 1.1 ragge * Constants:
86 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
87 1.1 ragge * The decimal values may be used, provided that the compiler will convert
88 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
89 1.1 ragge * shown.
90 1.1 ragge */
91 1.1 ragge #include "mathimpl.h"
92 1.1 ragge
93 1.1 ragge vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
94 1.1 ragge vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
95 1.1 ragge vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
96 1.1 ragge
97 1.1 ragge ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
98 1.1 ragge ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
99 1.1 ragge ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
100 1.1 ragge
101 1.1 ragge #ifdef vccast
102 1.1 ragge #define r2p1hi vccast(r2p1hi)
103 1.1 ragge #define r2p1lo vccast(r2p1lo)
104 1.1 ragge #define sqrt2 vccast(sqrt2)
105 1.1 ragge #endif
106 1.1 ragge
107 1.1 ragge double
108 1.1 ragge hypot(x,y)
109 1.1 ragge double x, y;
110 1.1 ragge {
111 1.3 simonb static const double zero=0, one=1,
112 1.1 ragge small=1.0E-18; /* fl(1+small)==1 */
113 1.1 ragge static const ibig=30; /* fl(1+2**(2*ibig))==1 */
114 1.1 ragge double t,r;
115 1.1 ragge int exp;
116 1.1 ragge
117 1.1 ragge if(finite(x))
118 1.1 ragge if(finite(y))
119 1.3 simonb {
120 1.1 ragge x=copysign(x,one);
121 1.1 ragge y=copysign(y,one);
122 1.3 simonb if(y > x)
123 1.1 ragge { t=x; x=y; y=t; }
124 1.1 ragge if(x == zero) return(zero);
125 1.1 ragge if(y == zero) return(x);
126 1.1 ragge exp= logb(x);
127 1.3 simonb if(exp-(int)logb(y) > ibig )
128 1.1 ragge /* raise inexact flag and return |x| */
129 1.1 ragge { one+small; return(x); }
130 1.1 ragge
131 1.1 ragge /* start computing sqrt(x^2 + y^2) */
132 1.1 ragge r=x-y;
133 1.1 ragge if(r>y) { /* x/y > 2 */
134 1.1 ragge r=x/y;
135 1.1 ragge r=r+sqrt(one+r*r); }
136 1.1 ragge else { /* 1 <= x/y <= 2 */
137 1.1 ragge r/=y; t=r*(r+2.0);
138 1.1 ragge r+=t/(sqrt2+sqrt(2.0+t));
139 1.1 ragge r+=r2p1lo; r+=r2p1hi; }
140 1.1 ragge
141 1.1 ragge r=y/r;
142 1.1 ragge return(x+r);
143 1.1 ragge
144 1.1 ragge }
145 1.1 ragge
146 1.1 ragge else if(y==y) /* y is +-INF */
147 1.1 ragge return(copysign(y,one));
148 1.3 simonb else
149 1.1 ragge return(y); /* y is NaN and x is finite */
150 1.1 ragge
151 1.1 ragge else if(x==x) /* x is +-INF */
152 1.1 ragge return (copysign(x,one));
153 1.1 ragge else if(finite(y))
154 1.1 ragge return(x); /* x is NaN, y is finite */
155 1.2 matt #if !defined(__vax__)&&!defined(tahoe)
156 1.1 ragge else if(y!=y) return(y); /* x and y is NaN */
157 1.2 matt #endif /* !defined(__vax__)&&!defined(tahoe) */
158 1.1 ragge else return(copysign(y,one)); /* y is INF */
159 1.1 ragge }
160 1.1 ragge
161 1.1 ragge /* CABS(Z)
162 1.1 ragge * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
163 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
164 1.1 ragge * CODED IN C BY K.C. NG, 11/28/84.
165 1.1 ragge * REVISED BY K.C. NG, 7/12/85.
166 1.1 ragge *
167 1.1 ragge * Required kernel function :
168 1.1 ragge * hypot(x,y)
169 1.1 ragge *
170 1.1 ragge * Method :
171 1.1 ragge * cabs(z) = hypot(x,y) .
172 1.1 ragge */
173 1.1 ragge
174 1.1 ragge struct complex { double x, y; };
175 1.1 ragge
176 1.1 ragge double
177 1.1 ragge cabs(z)
178 1.1 ragge struct complex z;
179 1.1 ragge {
180 1.1 ragge return hypot(z.x,z.y);
181 1.1 ragge }
182 1.1 ragge
183 1.1 ragge double
184 1.1 ragge z_abs(z)
185 1.1 ragge struct complex *z;
186 1.1 ragge {
187 1.1 ragge return hypot(z->x,z->y);
188 1.1 ragge }
189 1.1 ragge
190 1.1 ragge /* A faster but less accurate version of cabs(x,y) */
191 1.1 ragge #if 0
192 1.1 ragge double hypot(x,y)
193 1.1 ragge double x, y;
194 1.1 ragge {
195 1.1 ragge static const double zero=0, one=1;
196 1.1 ragge small=1.0E-18; /* fl(1+small)==1 */
197 1.1 ragge static const ibig=30; /* fl(1+2**(2*ibig))==1 */
198 1.1 ragge double temp;
199 1.1 ragge int exp;
200 1.1 ragge
201 1.1 ragge if(finite(x))
202 1.1 ragge if(finite(y))
203 1.3 simonb {
204 1.1 ragge x=copysign(x,one);
205 1.1 ragge y=copysign(y,one);
206 1.3 simonb if(y > x)
207 1.1 ragge { temp=x; x=y; y=temp; }
208 1.1 ragge if(x == zero) return(zero);
209 1.1 ragge if(y == zero) return(x);
210 1.1 ragge exp= logb(x);
211 1.1 ragge x=scalb(x,-exp);
212 1.3 simonb if(exp-(int)logb(y) > ibig )
213 1.1 ragge /* raise inexact flag and return |x| */
214 1.1 ragge { one+small; return(scalb(x,exp)); }
215 1.1 ragge else y=scalb(y,-exp);
216 1.1 ragge return(scalb(sqrt(x*x+y*y),exp));
217 1.1 ragge }
218 1.1 ragge
219 1.1 ragge else if(y==y) /* y is +-INF */
220 1.1 ragge return(copysign(y,one));
221 1.3 simonb else
222 1.1 ragge return(y); /* y is NaN and x is finite */
223 1.1 ragge
224 1.1 ragge else if(x==x) /* x is +-INF */
225 1.1 ragge return (copysign(x,one));
226 1.1 ragge else if(finite(y))
227 1.1 ragge return(x); /* x is NaN, y is finite */
228 1.1 ragge else if(y!=y) return(y); /* x and y is NaN */
229 1.1 ragge else return(copysign(y,one)); /* y is INF */
230 1.1 ragge }
231 1.1 ragge #endif
232