Home | History | Annotate | Line # | Download | only in noieee_src
n_cabs.c revision 1.3.10.1
      1  1.3.10.1   lukem /*      $NetBSD: n_cabs.c,v 1.3.10.1 2002/06/18 13:38:08 lukem Exp $ */
      2       1.1   ragge /*
      3       1.1   ragge  * Copyright (c) 1985, 1993
      4       1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5       1.1   ragge  *
      6       1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7       1.1   ragge  * modification, are permitted provided that the following conditions
      8       1.1   ragge  * are met:
      9       1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10       1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11       1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14       1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15       1.1   ragge  *    must display the following acknowledgement:
     16       1.1   ragge  *	This product includes software developed by the University of
     17       1.1   ragge  *	California, Berkeley and its contributors.
     18       1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19       1.1   ragge  *    may be used to endorse or promote products derived from this software
     20       1.1   ragge  *    without specific prior written permission.
     21       1.1   ragge  *
     22       1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1   ragge  * SUCH DAMAGE.
     33       1.1   ragge  */
     34       1.1   ragge 
     35       1.1   ragge #ifndef lint
     36       1.1   ragge static char sccsid[] = "@(#)cabs.c	8.1 (Berkeley) 6/4/93";
     37       1.1   ragge #endif /* not lint */
     38       1.1   ragge 
     39       1.1   ragge /* HYPOT(X,Y)
     40       1.1   ragge  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
     41       1.1   ragge  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     42       1.3  simonb  * CODED IN C BY K.C. NG, 11/28/84;
     43       1.1   ragge  * REVISED BY K.C. NG, 7/12/85.
     44       1.1   ragge  *
     45       1.1   ragge  * Required system supported functions :
     46       1.1   ragge  *	copysign(x,y)
     47       1.1   ragge  *	finite(x)
     48       1.1   ragge  *	scalb(x,N)
     49       1.1   ragge  *	sqrt(x)
     50       1.1   ragge  *
     51       1.1   ragge  * Method :
     52       1.1   ragge  *	1. replace x by |x| and y by |y|, and swap x and
     53       1.1   ragge  *	   y if y > x (hence x is never smaller than y).
     54       1.1   ragge  *	2. Hypot(x,y) is computed by:
     55       1.1   ragge  *	   Case I, x/y > 2
     56       1.3  simonb  *
     57       1.1   ragge  *				       y
     58       1.1   ragge  *		hypot = x + -----------------------------
     59       1.1   ragge  *			 		    2
     60       1.1   ragge  *			    sqrt ( 1 + [x/y]  )  +  x/y
     61       1.1   ragge  *
     62       1.3  simonb  *	   Case II, x/y <= 2
     63       1.1   ragge  *				                   y
     64       1.1   ragge  *		hypot = x + --------------------------------------------------
     65       1.3  simonb  *				          		     2
     66       1.1   ragge  *				     			[x/y]   -  2
     67       1.1   ragge  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
     68       1.1   ragge  *			 		    			  2
     69       1.1   ragge  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
     70       1.1   ragge  *
     71       1.1   ragge  *
     72       1.1   ragge  *
     73       1.1   ragge  * Special cases:
     74       1.1   ragge  *	hypot(x,y) is INF if x or y is +INF or -INF; else
     75       1.1   ragge  *	hypot(x,y) is NAN if x or y is NAN.
     76       1.1   ragge  *
     77       1.1   ragge  * Accuracy:
     78       1.1   ragge  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
     79       1.1   ragge  *	in the last place). See Kahan's "Interval Arithmetic Options in the
     80       1.1   ragge  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
     81       1.1   ragge  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
     82       1.1   ragge  *	code follows in	comments.) In a test run with 500,000 random arguments
     83       1.1   ragge  *	on a VAX, the maximum observed error was .959 ulps.
     84       1.1   ragge  *
     85       1.1   ragge  * Constants:
     86       1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
     87       1.1   ragge  * The decimal values may be used, provided that the compiler will convert
     88       1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
     89       1.1   ragge  * shown.
     90       1.1   ragge  */
     91  1.3.10.1   lukem #define _LIBM_STATIC
     92       1.1   ragge #include "mathimpl.h"
     93       1.1   ragge 
     94       1.1   ragge vc(r2p1hi, 2.4142135623730950345E0   ,8279,411a,ef32,99fc,   2, .9A827999FCEF32)
     95       1.1   ragge vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
     96       1.1   ragge vc(sqrt2,  1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
     97       1.1   ragge 
     98       1.1   ragge ic(r2p1hi, 2.4142135623730949234E0   ,   1, 1.3504F333F9DE6)
     99       1.1   ragge ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
    100       1.1   ragge ic(sqrt2,  1.4142135623730951455E0   ,   0, 1.6A09E667F3BCD)
    101       1.1   ragge 
    102       1.1   ragge #ifdef vccast
    103       1.1   ragge #define	r2p1hi	vccast(r2p1hi)
    104       1.1   ragge #define	r2p1lo	vccast(r2p1lo)
    105       1.1   ragge #define	sqrt2	vccast(sqrt2)
    106       1.1   ragge #endif
    107       1.1   ragge 
    108       1.1   ragge double
    109  1.3.10.1   lukem hypot(double x, double y)
    110       1.1   ragge {
    111       1.3  simonb 	static const double zero=0, one=1,
    112       1.1   ragge 		      small=1.0E-18;	/* fl(1+small)==1 */
    113       1.1   ragge 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
    114       1.1   ragge 	double t,r;
    115       1.1   ragge 	int exp;
    116       1.1   ragge 
    117       1.1   ragge 	if(finite(x))
    118       1.1   ragge 	    if(finite(y))
    119       1.3  simonb 	    {
    120       1.1   ragge 		x=copysign(x,one);
    121       1.1   ragge 		y=copysign(y,one);
    122       1.3  simonb 		if(y > x)
    123       1.1   ragge 		    { t=x; x=y; y=t; }
    124       1.1   ragge 		if(x == zero) return(zero);
    125       1.1   ragge 		if(y == zero) return(x);
    126       1.1   ragge 		exp= logb(x);
    127       1.3  simonb 		if(exp-(int)logb(y) > ibig )
    128       1.1   ragge 			/* raise inexact flag and return |x| */
    129       1.1   ragge 		   { one+small; return(x); }
    130       1.1   ragge 
    131       1.1   ragge 	    /* start computing sqrt(x^2 + y^2) */
    132       1.1   ragge 		r=x-y;
    133       1.1   ragge 		if(r>y) { 	/* x/y > 2 */
    134       1.1   ragge 		    r=x/y;
    135       1.1   ragge 		    r=r+sqrt(one+r*r); }
    136       1.1   ragge 		else {		/* 1 <= x/y <= 2 */
    137       1.1   ragge 		    r/=y; t=r*(r+2.0);
    138       1.1   ragge 		    r+=t/(sqrt2+sqrt(2.0+t));
    139       1.1   ragge 		    r+=r2p1lo; r+=r2p1hi; }
    140       1.1   ragge 
    141       1.1   ragge 		r=y/r;
    142       1.1   ragge 		return(x+r);
    143       1.1   ragge 
    144       1.1   ragge 	    }
    145       1.1   ragge 
    146       1.1   ragge 	    else if(y==y)   	   /* y is +-INF */
    147       1.1   ragge 		     return(copysign(y,one));
    148       1.3  simonb 	    else
    149       1.1   ragge 		     return(y);	   /* y is NaN and x is finite */
    150       1.1   ragge 
    151       1.1   ragge 	else if(x==x) 		   /* x is +-INF */
    152       1.1   ragge 	         return (copysign(x,one));
    153       1.1   ragge 	else if(finite(y))
    154       1.1   ragge 	         return(x);		   /* x is NaN, y is finite */
    155       1.2    matt #if !defined(__vax__)&&!defined(tahoe)
    156       1.1   ragge 	else if(y!=y) return(y);  /* x and y is NaN */
    157       1.2    matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    158       1.1   ragge 	else return(copysign(y,one));   /* y is INF */
    159       1.1   ragge }
    160       1.1   ragge 
    161       1.1   ragge /* CABS(Z)
    162       1.1   ragge  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
    163       1.1   ragge  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
    164       1.1   ragge  * CODED IN C BY K.C. NG, 11/28/84.
    165       1.1   ragge  * REVISED BY K.C. NG, 7/12/85.
    166       1.1   ragge  *
    167       1.1   ragge  * Required kernel function :
    168       1.1   ragge  *	hypot(x,y)
    169       1.1   ragge  *
    170       1.1   ragge  * Method :
    171       1.1   ragge  *	cabs(z) = hypot(x,y) .
    172       1.1   ragge  */
    173       1.1   ragge 
    174       1.1   ragge struct complex { double x, y; };
    175       1.1   ragge 
    176       1.1   ragge double
    177       1.1   ragge cabs(z)
    178       1.1   ragge struct complex z;
    179       1.1   ragge {
    180       1.1   ragge 	return hypot(z.x,z.y);
    181       1.1   ragge }
    182       1.1   ragge 
    183       1.1   ragge double
    184       1.1   ragge z_abs(z)
    185       1.1   ragge struct complex *z;
    186       1.1   ragge {
    187       1.1   ragge 	return hypot(z->x,z->y);
    188       1.1   ragge }
    189       1.1   ragge 
    190       1.1   ragge /* A faster but less accurate version of cabs(x,y) */
    191       1.1   ragge #if 0
    192       1.1   ragge double hypot(x,y)
    193       1.1   ragge double x, y;
    194       1.1   ragge {
    195       1.1   ragge 	static const double zero=0, one=1;
    196       1.1   ragge 		      small=1.0E-18;	/* fl(1+small)==1 */
    197       1.1   ragge 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
    198       1.1   ragge 	double temp;
    199       1.1   ragge 	int exp;
    200       1.1   ragge 
    201       1.1   ragge 	if(finite(x))
    202       1.1   ragge 	    if(finite(y))
    203       1.3  simonb 	    {
    204       1.1   ragge 		x=copysign(x,one);
    205       1.1   ragge 		y=copysign(y,one);
    206       1.3  simonb 		if(y > x)
    207       1.1   ragge 		    { temp=x; x=y; y=temp; }
    208       1.1   ragge 		if(x == zero) return(zero);
    209       1.1   ragge 		if(y == zero) return(x);
    210       1.1   ragge 		exp= logb(x);
    211       1.1   ragge 		x=scalb(x,-exp);
    212       1.3  simonb 		if(exp-(int)logb(y) > ibig )
    213       1.1   ragge 			/* raise inexact flag and return |x| */
    214       1.1   ragge 		   { one+small; return(scalb(x,exp)); }
    215       1.1   ragge 		else y=scalb(y,-exp);
    216       1.1   ragge 		return(scalb(sqrt(x*x+y*y),exp));
    217       1.1   ragge 	    }
    218       1.1   ragge 
    219       1.1   ragge 	    else if(y==y)   	   /* y is +-INF */
    220       1.1   ragge 		     return(copysign(y,one));
    221       1.3  simonb 	    else
    222       1.1   ragge 		     return(y);	   /* y is NaN and x is finite */
    223       1.1   ragge 
    224       1.1   ragge 	else if(x==x) 		   /* x is +-INF */
    225       1.1   ragge 	         return (copysign(x,one));
    226       1.1   ragge 	else if(finite(y))
    227       1.1   ragge 	         return(x);		   /* x is NaN, y is finite */
    228       1.1   ragge 	else if(y!=y) return(y);  	/* x and y is NaN */
    229       1.1   ragge 	else return(copysign(y,one));   /* y is INF */
    230       1.1   ragge }
    231       1.1   ragge #endif
    232