Home | History | Annotate | Line # | Download | only in noieee_src
n_cabs.c revision 1.3
      1 /*      $NetBSD: n_cabs.c,v 1.3 1999/07/02 15:37:36 simonb Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)cabs.c	8.1 (Berkeley) 6/4/93";
     37 #endif /* not lint */
     38 
     39 /* HYPOT(X,Y)
     40  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
     41  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     42  * CODED IN C BY K.C. NG, 11/28/84;
     43  * REVISED BY K.C. NG, 7/12/85.
     44  *
     45  * Required system supported functions :
     46  *	copysign(x,y)
     47  *	finite(x)
     48  *	scalb(x,N)
     49  *	sqrt(x)
     50  *
     51  * Method :
     52  *	1. replace x by |x| and y by |y|, and swap x and
     53  *	   y if y > x (hence x is never smaller than y).
     54  *	2. Hypot(x,y) is computed by:
     55  *	   Case I, x/y > 2
     56  *
     57  *				       y
     58  *		hypot = x + -----------------------------
     59  *			 		    2
     60  *			    sqrt ( 1 + [x/y]  )  +  x/y
     61  *
     62  *	   Case II, x/y <= 2
     63  *				                   y
     64  *		hypot = x + --------------------------------------------------
     65  *				          		     2
     66  *				     			[x/y]   -  2
     67  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
     68  *			 		    			  2
     69  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
     70  *
     71  *
     72  *
     73  * Special cases:
     74  *	hypot(x,y) is INF if x or y is +INF or -INF; else
     75  *	hypot(x,y) is NAN if x or y is NAN.
     76  *
     77  * Accuracy:
     78  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
     79  *	in the last place). See Kahan's "Interval Arithmetic Options in the
     80  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
     81  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
     82  *	code follows in	comments.) In a test run with 500,000 random arguments
     83  *	on a VAX, the maximum observed error was .959 ulps.
     84  *
     85  * Constants:
     86  * The hexadecimal values are the intended ones for the following constants.
     87  * The decimal values may be used, provided that the compiler will convert
     88  * from decimal to binary accurately enough to produce the hexadecimal values
     89  * shown.
     90  */
     91 #include "mathimpl.h"
     92 
     93 vc(r2p1hi, 2.4142135623730950345E0   ,8279,411a,ef32,99fc,   2, .9A827999FCEF32)
     94 vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
     95 vc(sqrt2,  1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
     96 
     97 ic(r2p1hi, 2.4142135623730949234E0   ,   1, 1.3504F333F9DE6)
     98 ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
     99 ic(sqrt2,  1.4142135623730951455E0   ,   0, 1.6A09E667F3BCD)
    100 
    101 #ifdef vccast
    102 #define	r2p1hi	vccast(r2p1hi)
    103 #define	r2p1lo	vccast(r2p1lo)
    104 #define	sqrt2	vccast(sqrt2)
    105 #endif
    106 
    107 double
    108 hypot(x,y)
    109 double x, y;
    110 {
    111 	static const double zero=0, one=1,
    112 		      small=1.0E-18;	/* fl(1+small)==1 */
    113 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
    114 	double t,r;
    115 	int exp;
    116 
    117 	if(finite(x))
    118 	    if(finite(y))
    119 	    {
    120 		x=copysign(x,one);
    121 		y=copysign(y,one);
    122 		if(y > x)
    123 		    { t=x; x=y; y=t; }
    124 		if(x == zero) return(zero);
    125 		if(y == zero) return(x);
    126 		exp= logb(x);
    127 		if(exp-(int)logb(y) > ibig )
    128 			/* raise inexact flag and return |x| */
    129 		   { one+small; return(x); }
    130 
    131 	    /* start computing sqrt(x^2 + y^2) */
    132 		r=x-y;
    133 		if(r>y) { 	/* x/y > 2 */
    134 		    r=x/y;
    135 		    r=r+sqrt(one+r*r); }
    136 		else {		/* 1 <= x/y <= 2 */
    137 		    r/=y; t=r*(r+2.0);
    138 		    r+=t/(sqrt2+sqrt(2.0+t));
    139 		    r+=r2p1lo; r+=r2p1hi; }
    140 
    141 		r=y/r;
    142 		return(x+r);
    143 
    144 	    }
    145 
    146 	    else if(y==y)   	   /* y is +-INF */
    147 		     return(copysign(y,one));
    148 	    else
    149 		     return(y);	   /* y is NaN and x is finite */
    150 
    151 	else if(x==x) 		   /* x is +-INF */
    152 	         return (copysign(x,one));
    153 	else if(finite(y))
    154 	         return(x);		   /* x is NaN, y is finite */
    155 #if !defined(__vax__)&&!defined(tahoe)
    156 	else if(y!=y) return(y);  /* x and y is NaN */
    157 #endif	/* !defined(__vax__)&&!defined(tahoe) */
    158 	else return(copysign(y,one));   /* y is INF */
    159 }
    160 
    161 /* CABS(Z)
    162  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
    163  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
    164  * CODED IN C BY K.C. NG, 11/28/84.
    165  * REVISED BY K.C. NG, 7/12/85.
    166  *
    167  * Required kernel function :
    168  *	hypot(x,y)
    169  *
    170  * Method :
    171  *	cabs(z) = hypot(x,y) .
    172  */
    173 
    174 struct complex { double x, y; };
    175 
    176 double
    177 cabs(z)
    178 struct complex z;
    179 {
    180 	return hypot(z.x,z.y);
    181 }
    182 
    183 double
    184 z_abs(z)
    185 struct complex *z;
    186 {
    187 	return hypot(z->x,z->y);
    188 }
    189 
    190 /* A faster but less accurate version of cabs(x,y) */
    191 #if 0
    192 double hypot(x,y)
    193 double x, y;
    194 {
    195 	static const double zero=0, one=1;
    196 		      small=1.0E-18;	/* fl(1+small)==1 */
    197 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
    198 	double temp;
    199 	int exp;
    200 
    201 	if(finite(x))
    202 	    if(finite(y))
    203 	    {
    204 		x=copysign(x,one);
    205 		y=copysign(y,one);
    206 		if(y > x)
    207 		    { temp=x; x=y; y=temp; }
    208 		if(x == zero) return(zero);
    209 		if(y == zero) return(x);
    210 		exp= logb(x);
    211 		x=scalb(x,-exp);
    212 		if(exp-(int)logb(y) > ibig )
    213 			/* raise inexact flag and return |x| */
    214 		   { one+small; return(scalb(x,exp)); }
    215 		else y=scalb(y,-exp);
    216 		return(scalb(sqrt(x*x+y*y),exp));
    217 	    }
    218 
    219 	    else if(y==y)   	   /* y is +-INF */
    220 		     return(copysign(y,one));
    221 	    else
    222 		     return(y);	   /* y is NaN and x is finite */
    223 
    224 	else if(x==x) 		   /* x is +-INF */
    225 	         return (copysign(x,one));
    226 	else if(finite(y))
    227 	         return(x);		   /* x is NaN, y is finite */
    228 	else if(y!=y) return(y);  	/* x and y is NaN */
    229 	else return(copysign(y,one));   /* y is INF */
    230 }
    231 #endif
    232