1 1.8 martin /* $NetBSD: n_expm1.c,v 1.8 2013/11/24 18:50:58 martin Exp $ */ 2 1.1 ragge /* 3 1.1 ragge * Copyright (c) 1985, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.6 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge */ 30 1.1 ragge 31 1.1 ragge #ifndef lint 32 1.2 ragge #if 0 33 1.1 ragge static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93"; 34 1.2 ragge #endif 35 1.1 ragge #endif /* not lint */ 36 1.1 ragge 37 1.1 ragge /* EXPM1(X) 38 1.1 ragge * RETURN THE EXPONENTIAL OF X MINUS ONE 39 1.1 ragge * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) 40 1.4 simonb * CODED IN C BY K.C. NG, 1/19/85; 41 1.1 ragge * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. 42 1.1 ragge * 43 1.1 ragge * Required system supported functions: 44 1.4 simonb * scalb(x,n) 45 1.4 simonb * copysign(x,y) 46 1.1 ragge * finite(x) 47 1.1 ragge * 48 1.1 ragge * Kernel function: 49 1.1 ragge * exp__E(x,c) 50 1.1 ragge * 51 1.1 ragge * Method: 52 1.4 simonb * 1. Argument Reduction: given the input x, find r and integer k such 53 1.1 ragge * that 54 1.4 simonb * x = k*ln2 + r, |r| <= 0.5*ln2 . 55 1.1 ragge * r will be represented as r := z+c for better accuracy. 56 1.1 ragge * 57 1.4 simonb * 2. Compute EXPM1(r)=exp(r)-1 by 58 1.1 ragge * 59 1.1 ragge * EXPM1(r=z+c) := z + exp__E(z,c) 60 1.1 ragge * 61 1.1 ragge * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 62 1.1 ragge * 63 1.4 simonb * Remarks: 64 1.1 ragge * 1. When k=1 and z < -0.25, we use the following formula for 65 1.1 ragge * better accuracy: 66 1.1 ragge * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 67 1.1 ragge * 2. To avoid rounding error in 1-2^-k where k is large, we use 68 1.1 ragge * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 69 1.4 simonb * when k>56. 70 1.1 ragge * 71 1.1 ragge * Special cases: 72 1.1 ragge * EXPM1(INF) is INF, EXPM1(NaN) is NaN; 73 1.1 ragge * EXPM1(-INF)= -1; 74 1.1 ragge * for finite argument, only EXPM1(0)=0 is exact. 75 1.1 ragge * 76 1.1 ragge * Accuracy: 77 1.1 ragge * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with 78 1.1 ragge * 1,166,000 random arguments on a VAX, the maximum observed error was 79 1.1 ragge * .872 ulps (units of the last place). 80 1.1 ragge * 81 1.1 ragge * Constants: 82 1.1 ragge * The hexadecimal values are the intended ones for the following constants. 83 1.1 ragge * The decimal values may be used, provided that the compiler will convert 84 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values 85 1.1 ragge * shown. 86 1.1 ragge */ 87 1.1 ragge 88 1.5 matt #define _LIBM_STATIC 89 1.1 ragge #include "mathimpl.h" 90 1.1 ragge 91 1.1 ragge vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 92 1.1 ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 93 1.1 ragge vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) 94 1.1 ragge vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) 95 1.1 ragge 96 1.1 ragge ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 97 1.1 ragge ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76) 98 1.1 ragge ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) 99 1.1 ragge ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) 100 1.1 ragge 101 1.1 ragge #ifdef vccast 102 1.1 ragge #define ln2hi vccast(ln2hi) 103 1.1 ragge #define ln2lo vccast(ln2lo) 104 1.1 ragge #define lnhuge vccast(lnhuge) 105 1.1 ragge #define invln2 vccast(invln2) 106 1.1 ragge #endif 107 1.1 ragge 108 1.5 matt #if defined(__vax__)||defined(tahoe) 109 1.5 matt #define PREC 56 110 1.5 matt #else /* defined(__vax__)||defined(tahoe) */ 111 1.5 matt #define PREC 53 112 1.5 matt #endif /* defined(__vax__)||defined(tahoe) */ 113 1.5 matt 114 1.8 martin float 115 1.8 martin expm1f(float x) 116 1.8 martin { 117 1.8 martin return (float)expm1(x); 118 1.8 martin } 119 1.8 martin 120 1.5 matt double 121 1.5 matt expm1(double x) 122 1.1 ragge { 123 1.7 uwe static const double one=1.0, half=1.0/2.0; 124 1.1 ragge double z,hi,lo,c; 125 1.1 ragge int k; 126 1.1 ragge 127 1.3 matt #if !defined(__vax__)&&!defined(tahoe) 128 1.1 ragge if(x!=x) return(x); /* x is NaN */ 129 1.3 matt #endif /* !defined(__vax__)&&!defined(tahoe) */ 130 1.1 ragge 131 1.1 ragge if( x <= lnhuge ) { 132 1.1 ragge if( x >= -40.0 ) { 133 1.1 ragge 134 1.1 ragge /* argument reduction : x - k*ln2 */ 135 1.1 ragge k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ 136 1.4 simonb hi=x-k*ln2hi ; 137 1.1 ragge z=hi-(lo=k*ln2lo); 138 1.1 ragge c=(hi-z)-lo; 139 1.1 ragge 140 1.1 ragge if(k==0) return(z+__exp__E(z,c)); 141 1.1 ragge if(k==1) 142 1.4 simonb if(z< -0.25) 143 1.1 ragge {x=z+half;x +=__exp__E(z,c); return(x+x);} 144 1.1 ragge else 145 1.1 ragge {z+=__exp__E(z,c); x=half+z; return(x+x);} 146 1.1 ragge /* end of k=1 */ 147 1.1 ragge 148 1.1 ragge else { 149 1.5 matt if(k<=PREC) 150 1.1 ragge { x=one-scalb(one,-k); z += __exp__E(z,c);} 151 1.1 ragge else if(k<100) 152 1.1 ragge { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;} 153 1.4 simonb else 154 1.1 ragge { x = __exp__E(z,c)+z; z=one;} 155 1.1 ragge 156 1.4 simonb return (scalb(x+z,k)); 157 1.1 ragge } 158 1.1 ragge } 159 1.1 ragge /* end of x > lnunfl */ 160 1.1 ragge 161 1.4 simonb else 162 1.1 ragge /* expm1(-big#) rounded to -1 (inexact) */ 163 1.4 simonb if(finite(x)) 164 1.2 ragge { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */ 165 1.1 ragge 166 1.1 ragge /* expm1(-INF) is -1 */ 167 1.1 ragge else return(-one); 168 1.1 ragge } 169 1.1 ragge /* end of x < lnhuge */ 170 1.1 ragge 171 1.4 simonb else 172 1.1 ragge /* expm1(INF) is INF, expm1(+big#) overflows to INF */ 173 1.1 ragge return( finite(x) ? scalb(one,5000) : x); 174 1.1 ragge } 175