n_expm1.c revision 1.2 1 1.2 ragge /* $NetBSD: n_expm1.c,v 1.2 1997/10/20 14:12:26 ragge Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge /* EXPM1(X)
42 1.1 ragge * RETURN THE EXPONENTIAL OF X MINUS ONE
43 1.1 ragge * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
44 1.1 ragge * CODED IN C BY K.C. NG, 1/19/85;
45 1.1 ragge * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
46 1.1 ragge *
47 1.1 ragge * Required system supported functions:
48 1.1 ragge * scalb(x,n)
49 1.1 ragge * copysign(x,y)
50 1.1 ragge * finite(x)
51 1.1 ragge *
52 1.1 ragge * Kernel function:
53 1.1 ragge * exp__E(x,c)
54 1.1 ragge *
55 1.1 ragge * Method:
56 1.1 ragge * 1. Argument Reduction: given the input x, find r and integer k such
57 1.1 ragge * that
58 1.1 ragge * x = k*ln2 + r, |r| <= 0.5*ln2 .
59 1.1 ragge * r will be represented as r := z+c for better accuracy.
60 1.1 ragge *
61 1.1 ragge * 2. Compute EXPM1(r)=exp(r)-1 by
62 1.1 ragge *
63 1.1 ragge * EXPM1(r=z+c) := z + exp__E(z,c)
64 1.1 ragge *
65 1.1 ragge * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
66 1.1 ragge *
67 1.1 ragge * Remarks:
68 1.1 ragge * 1. When k=1 and z < -0.25, we use the following formula for
69 1.1 ragge * better accuracy:
70 1.1 ragge * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
71 1.1 ragge * 2. To avoid rounding error in 1-2^-k where k is large, we use
72 1.1 ragge * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
73 1.1 ragge * when k>56.
74 1.1 ragge *
75 1.1 ragge * Special cases:
76 1.1 ragge * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
77 1.1 ragge * EXPM1(-INF)= -1;
78 1.1 ragge * for finite argument, only EXPM1(0)=0 is exact.
79 1.1 ragge *
80 1.1 ragge * Accuracy:
81 1.1 ragge * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
82 1.1 ragge * 1,166,000 random arguments on a VAX, the maximum observed error was
83 1.1 ragge * .872 ulps (units of the last place).
84 1.1 ragge *
85 1.1 ragge * Constants:
86 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
87 1.1 ragge * The decimal values may be used, provided that the compiler will convert
88 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
89 1.1 ragge * shown.
90 1.1 ragge */
91 1.1 ragge
92 1.1 ragge #include "mathimpl.h"
93 1.1 ragge
94 1.1 ragge vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
95 1.1 ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
96 1.1 ragge vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
97 1.1 ragge vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
98 1.1 ragge
99 1.1 ragge ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
100 1.1 ragge ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
101 1.1 ragge ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
102 1.1 ragge ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
103 1.1 ragge
104 1.1 ragge #ifdef vccast
105 1.1 ragge #define ln2hi vccast(ln2hi)
106 1.1 ragge #define ln2lo vccast(ln2lo)
107 1.1 ragge #define lnhuge vccast(lnhuge)
108 1.1 ragge #define invln2 vccast(invln2)
109 1.1 ragge #endif
110 1.1 ragge
111 1.1 ragge double expm1(x)
112 1.1 ragge double x;
113 1.1 ragge {
114 1.1 ragge const static double one=1.0, half=1.0/2.0;
115 1.1 ragge double z,hi,lo,c;
116 1.1 ragge int k;
117 1.1 ragge #if defined(vax)||defined(tahoe)
118 1.1 ragge static prec=56;
119 1.1 ragge #else /* defined(vax)||defined(tahoe) */
120 1.1 ragge static prec=53;
121 1.1 ragge #endif /* defined(vax)||defined(tahoe) */
122 1.1 ragge
123 1.1 ragge #if !defined(vax)&&!defined(tahoe)
124 1.1 ragge if(x!=x) return(x); /* x is NaN */
125 1.1 ragge #endif /* !defined(vax)&&!defined(tahoe) */
126 1.1 ragge
127 1.1 ragge if( x <= lnhuge ) {
128 1.1 ragge if( x >= -40.0 ) {
129 1.1 ragge
130 1.1 ragge /* argument reduction : x - k*ln2 */
131 1.1 ragge k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
132 1.1 ragge hi=x-k*ln2hi ;
133 1.1 ragge z=hi-(lo=k*ln2lo);
134 1.1 ragge c=(hi-z)-lo;
135 1.1 ragge
136 1.1 ragge if(k==0) return(z+__exp__E(z,c));
137 1.1 ragge if(k==1)
138 1.1 ragge if(z< -0.25)
139 1.1 ragge {x=z+half;x +=__exp__E(z,c); return(x+x);}
140 1.1 ragge else
141 1.1 ragge {z+=__exp__E(z,c); x=half+z; return(x+x);}
142 1.1 ragge /* end of k=1 */
143 1.1 ragge
144 1.1 ragge else {
145 1.1 ragge if(k<=prec)
146 1.1 ragge { x=one-scalb(one,-k); z += __exp__E(z,c);}
147 1.1 ragge else if(k<100)
148 1.1 ragge { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
149 1.1 ragge else
150 1.1 ragge { x = __exp__E(z,c)+z; z=one;}
151 1.1 ragge
152 1.1 ragge return (scalb(x+z,k));
153 1.1 ragge }
154 1.1 ragge }
155 1.1 ragge /* end of x > lnunfl */
156 1.1 ragge
157 1.1 ragge else
158 1.1 ragge /* expm1(-big#) rounded to -1 (inexact) */
159 1.1 ragge if(finite(x))
160 1.2 ragge { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
161 1.1 ragge
162 1.1 ragge /* expm1(-INF) is -1 */
163 1.1 ragge else return(-one);
164 1.1 ragge }
165 1.1 ragge /* end of x < lnhuge */
166 1.1 ragge
167 1.1 ragge else
168 1.1 ragge /* expm1(INF) is INF, expm1(+big#) overflows to INF */
169 1.1 ragge return( finite(x) ? scalb(one,5000) : x);
170 1.1 ragge }
171