Home | History | Annotate | Line # | Download | only in noieee_src
n_expm1.c revision 1.4
      1  1.4  simonb /*      $NetBSD: n_expm1.c,v 1.4 1999/07/02 15:37:37 simonb Exp $ */
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1985, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1   ragge  *    must display the following acknowledgement:
     16  1.1   ragge  *	This product includes software developed by the University of
     17  1.1   ragge  *	California, Berkeley and its contributors.
     18  1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1   ragge  *    may be used to endorse or promote products derived from this software
     20  1.1   ragge  *    without specific prior written permission.
     21  1.1   ragge  *
     22  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1   ragge  * SUCH DAMAGE.
     33  1.1   ragge  */
     34  1.1   ragge 
     35  1.1   ragge #ifndef lint
     36  1.2   ragge #if 0
     37  1.1   ragge static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
     38  1.2   ragge #endif
     39  1.1   ragge #endif /* not lint */
     40  1.1   ragge 
     41  1.1   ragge /* EXPM1(X)
     42  1.1   ragge  * RETURN THE EXPONENTIAL OF X MINUS ONE
     43  1.1   ragge  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
     44  1.4  simonb  * CODED IN C BY K.C. NG, 1/19/85;
     45  1.1   ragge  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
     46  1.1   ragge  *
     47  1.1   ragge  * Required system supported functions:
     48  1.4  simonb  *	scalb(x,n)
     49  1.4  simonb  *	copysign(x,y)
     50  1.1   ragge  *	finite(x)
     51  1.1   ragge  *
     52  1.1   ragge  * Kernel function:
     53  1.1   ragge  *	exp__E(x,c)
     54  1.1   ragge  *
     55  1.1   ragge  * Method:
     56  1.4  simonb  *	1. Argument Reduction: given the input x, find r and integer k such
     57  1.1   ragge  *	   that
     58  1.4  simonb  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     59  1.1   ragge  *	   r will be represented as r := z+c for better accuracy.
     60  1.1   ragge  *
     61  1.4  simonb  *	2. Compute EXPM1(r)=exp(r)-1 by
     62  1.1   ragge  *
     63  1.1   ragge  *			EXPM1(r=z+c) := z + exp__E(z,c)
     64  1.1   ragge  *
     65  1.1   ragge  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
     66  1.1   ragge  *
     67  1.4  simonb  * 	Remarks:
     68  1.1   ragge  *	   1. When k=1 and z < -0.25, we use the following formula for
     69  1.1   ragge  *	      better accuracy:
     70  1.1   ragge  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
     71  1.1   ragge  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
     72  1.1   ragge  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
     73  1.4  simonb  *	      when k>56.
     74  1.1   ragge  *
     75  1.1   ragge  * Special cases:
     76  1.1   ragge  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
     77  1.1   ragge  *	EXPM1(-INF)= -1;
     78  1.1   ragge  *	for finite argument, only EXPM1(0)=0 is exact.
     79  1.1   ragge  *
     80  1.1   ragge  * Accuracy:
     81  1.1   ragge  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
     82  1.1   ragge  *	1,166,000 random arguments on a VAX, the maximum observed error was
     83  1.1   ragge  *	.872 ulps (units of the last place).
     84  1.1   ragge  *
     85  1.1   ragge  * Constants:
     86  1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
     87  1.1   ragge  * The decimal values may be used, provided that the compiler will convert
     88  1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
     89  1.1   ragge  * shown.
     90  1.1   ragge  */
     91  1.1   ragge 
     92  1.1   ragge #include "mathimpl.h"
     93  1.1   ragge 
     94  1.1   ragge vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     95  1.1   ragge vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     96  1.1   ragge vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     97  1.1   ragge vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     98  1.1   ragge 
     99  1.1   ragge ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
    100  1.1   ragge ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
    101  1.1   ragge ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
    102  1.1   ragge ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
    103  1.1   ragge 
    104  1.1   ragge #ifdef vccast
    105  1.1   ragge #define	ln2hi	vccast(ln2hi)
    106  1.1   ragge #define	ln2lo	vccast(ln2lo)
    107  1.1   ragge #define	lnhuge	vccast(lnhuge)
    108  1.1   ragge #define	invln2	vccast(invln2)
    109  1.1   ragge #endif
    110  1.1   ragge 
    111  1.1   ragge double expm1(x)
    112  1.1   ragge double x;
    113  1.1   ragge {
    114  1.4  simonb 	const static double one=1.0, half=1.0/2.0;
    115  1.1   ragge 	double  z,hi,lo,c;
    116  1.1   ragge 	int k;
    117  1.3    matt #if defined(__vax__)||defined(tahoe)
    118  1.3    matt 	static int prec=56;
    119  1.3    matt #else	/* defined(__vax__)||defined(tahoe) */
    120  1.3    matt 	static int prec=53;
    121  1.3    matt #endif	/* defined(__vax__)||defined(tahoe) */
    122  1.1   ragge 
    123  1.3    matt #if !defined(__vax__)&&!defined(tahoe)
    124  1.1   ragge 	if(x!=x) return(x);	/* x is NaN */
    125  1.3    matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    126  1.1   ragge 
    127  1.1   ragge 	if( x <= lnhuge ) {
    128  1.1   ragge 		if( x >= -40.0 ) {
    129  1.1   ragge 
    130  1.1   ragge 		    /* argument reduction : x - k*ln2 */
    131  1.1   ragge 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    132  1.4  simonb 			hi=x-k*ln2hi ;
    133  1.1   ragge 			z=hi-(lo=k*ln2lo);
    134  1.1   ragge 			c=(hi-z)-lo;
    135  1.1   ragge 
    136  1.1   ragge 			if(k==0) return(z+__exp__E(z,c));
    137  1.1   ragge 			if(k==1)
    138  1.4  simonb 			    if(z< -0.25)
    139  1.1   ragge 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
    140  1.1   ragge 			    else
    141  1.1   ragge 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
    142  1.1   ragge 		    /* end of k=1 */
    143  1.1   ragge 
    144  1.1   ragge 			else {
    145  1.1   ragge 			    if(k<=prec)
    146  1.1   ragge 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
    147  1.1   ragge 			    else if(k<100)
    148  1.1   ragge 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
    149  1.4  simonb 			    else
    150  1.1   ragge 			      { x = __exp__E(z,c)+z; z=one;}
    151  1.1   ragge 
    152  1.4  simonb 			    return (scalb(x+z,k));
    153  1.1   ragge 			}
    154  1.1   ragge 		}
    155  1.1   ragge 		/* end of x > lnunfl */
    156  1.1   ragge 
    157  1.4  simonb 		else
    158  1.1   ragge 		     /* expm1(-big#) rounded to -1 (inexact) */
    159  1.4  simonb 		     if(finite(x))
    160  1.2   ragge 			 { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
    161  1.1   ragge 
    162  1.1   ragge 		     /* expm1(-INF) is -1 */
    163  1.1   ragge 		     else return(-one);
    164  1.1   ragge 	}
    165  1.1   ragge 	/* end of x < lnhuge */
    166  1.1   ragge 
    167  1.4  simonb 	else
    168  1.1   ragge 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
    169  1.1   ragge 	    return( finite(x) ?  scalb(one,5000) : x);
    170  1.1   ragge }
    171