Home | History | Annotate | Line # | Download | only in noieee_src
n_expm1.c revision 1.4.10.1
      1  1.4.10.1   lukem /*      $NetBSD: n_expm1.c,v 1.4.10.1 2002/06/18 13:39:03 lukem Exp $ */
      2       1.1   ragge /*
      3       1.1   ragge  * Copyright (c) 1985, 1993
      4       1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5       1.1   ragge  *
      6       1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7       1.1   ragge  * modification, are permitted provided that the following conditions
      8       1.1   ragge  * are met:
      9       1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10       1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11       1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14       1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15       1.1   ragge  *    must display the following acknowledgement:
     16       1.1   ragge  *	This product includes software developed by the University of
     17       1.1   ragge  *	California, Berkeley and its contributors.
     18       1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19       1.1   ragge  *    may be used to endorse or promote products derived from this software
     20       1.1   ragge  *    without specific prior written permission.
     21       1.1   ragge  *
     22       1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1   ragge  * SUCH DAMAGE.
     33       1.1   ragge  */
     34       1.1   ragge 
     35       1.1   ragge #ifndef lint
     36       1.2   ragge #if 0
     37       1.1   ragge static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
     38       1.2   ragge #endif
     39       1.1   ragge #endif /* not lint */
     40       1.1   ragge 
     41       1.1   ragge /* EXPM1(X)
     42       1.1   ragge  * RETURN THE EXPONENTIAL OF X MINUS ONE
     43       1.1   ragge  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
     44       1.4  simonb  * CODED IN C BY K.C. NG, 1/19/85;
     45       1.1   ragge  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
     46       1.1   ragge  *
     47       1.1   ragge  * Required system supported functions:
     48       1.4  simonb  *	scalb(x,n)
     49       1.4  simonb  *	copysign(x,y)
     50       1.1   ragge  *	finite(x)
     51       1.1   ragge  *
     52       1.1   ragge  * Kernel function:
     53       1.1   ragge  *	exp__E(x,c)
     54       1.1   ragge  *
     55       1.1   ragge  * Method:
     56       1.4  simonb  *	1. Argument Reduction: given the input x, find r and integer k such
     57       1.1   ragge  *	   that
     58       1.4  simonb  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     59       1.1   ragge  *	   r will be represented as r := z+c for better accuracy.
     60       1.1   ragge  *
     61       1.4  simonb  *	2. Compute EXPM1(r)=exp(r)-1 by
     62       1.1   ragge  *
     63       1.1   ragge  *			EXPM1(r=z+c) := z + exp__E(z,c)
     64       1.1   ragge  *
     65       1.1   ragge  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
     66       1.1   ragge  *
     67       1.4  simonb  * 	Remarks:
     68       1.1   ragge  *	   1. When k=1 and z < -0.25, we use the following formula for
     69       1.1   ragge  *	      better accuracy:
     70       1.1   ragge  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
     71       1.1   ragge  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
     72       1.1   ragge  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
     73       1.4  simonb  *	      when k>56.
     74       1.1   ragge  *
     75       1.1   ragge  * Special cases:
     76       1.1   ragge  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
     77       1.1   ragge  *	EXPM1(-INF)= -1;
     78       1.1   ragge  *	for finite argument, only EXPM1(0)=0 is exact.
     79       1.1   ragge  *
     80       1.1   ragge  * Accuracy:
     81       1.1   ragge  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
     82       1.1   ragge  *	1,166,000 random arguments on a VAX, the maximum observed error was
     83       1.1   ragge  *	.872 ulps (units of the last place).
     84       1.1   ragge  *
     85       1.1   ragge  * Constants:
     86       1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
     87       1.1   ragge  * The decimal values may be used, provided that the compiler will convert
     88       1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
     89       1.1   ragge  * shown.
     90       1.1   ragge  */
     91       1.1   ragge 
     92  1.4.10.1   lukem #define _LIBM_STATIC
     93       1.1   ragge #include "mathimpl.h"
     94       1.1   ragge 
     95       1.1   ragge vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     96       1.1   ragge vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     97       1.1   ragge vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     98       1.1   ragge vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     99       1.1   ragge 
    100       1.1   ragge ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
    101       1.1   ragge ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
    102       1.1   ragge ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
    103       1.1   ragge ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
    104       1.1   ragge 
    105       1.1   ragge #ifdef vccast
    106       1.1   ragge #define	ln2hi	vccast(ln2hi)
    107       1.1   ragge #define	ln2lo	vccast(ln2lo)
    108       1.1   ragge #define	lnhuge	vccast(lnhuge)
    109       1.1   ragge #define	invln2	vccast(invln2)
    110       1.1   ragge #endif
    111       1.1   ragge 
    112  1.4.10.1   lukem #if defined(__vax__)||defined(tahoe)
    113  1.4.10.1   lukem #define PREC	56
    114  1.4.10.1   lukem #else	/* defined(__vax__)||defined(tahoe) */
    115  1.4.10.1   lukem #define PREC	53
    116  1.4.10.1   lukem #endif	/* defined(__vax__)||defined(tahoe) */
    117  1.4.10.1   lukem 
    118  1.4.10.1   lukem double
    119  1.4.10.1   lukem expm1(double x)
    120       1.1   ragge {
    121       1.4  simonb 	const static double one=1.0, half=1.0/2.0;
    122       1.1   ragge 	double  z,hi,lo,c;
    123       1.1   ragge 	int k;
    124       1.1   ragge 
    125       1.3    matt #if !defined(__vax__)&&!defined(tahoe)
    126       1.1   ragge 	if(x!=x) return(x);	/* x is NaN */
    127       1.3    matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    128       1.1   ragge 
    129       1.1   ragge 	if( x <= lnhuge ) {
    130       1.1   ragge 		if( x >= -40.0 ) {
    131       1.1   ragge 
    132       1.1   ragge 		    /* argument reduction : x - k*ln2 */
    133       1.1   ragge 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    134       1.4  simonb 			hi=x-k*ln2hi ;
    135       1.1   ragge 			z=hi-(lo=k*ln2lo);
    136       1.1   ragge 			c=(hi-z)-lo;
    137       1.1   ragge 
    138       1.1   ragge 			if(k==0) return(z+__exp__E(z,c));
    139       1.1   ragge 			if(k==1)
    140       1.4  simonb 			    if(z< -0.25)
    141       1.1   ragge 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
    142       1.1   ragge 			    else
    143       1.1   ragge 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
    144       1.1   ragge 		    /* end of k=1 */
    145       1.1   ragge 
    146       1.1   ragge 			else {
    147  1.4.10.1   lukem 			    if(k<=PREC)
    148       1.1   ragge 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
    149       1.1   ragge 			    else if(k<100)
    150       1.1   ragge 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
    151       1.4  simonb 			    else
    152       1.1   ragge 			      { x = __exp__E(z,c)+z; z=one;}
    153       1.1   ragge 
    154       1.4  simonb 			    return (scalb(x+z,k));
    155       1.1   ragge 			}
    156       1.1   ragge 		}
    157       1.1   ragge 		/* end of x > lnunfl */
    158       1.1   ragge 
    159       1.4  simonb 		else
    160       1.1   ragge 		     /* expm1(-big#) rounded to -1 (inexact) */
    161       1.4  simonb 		     if(finite(x))
    162       1.2   ragge 			 { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
    163       1.1   ragge 
    164       1.1   ragge 		     /* expm1(-INF) is -1 */
    165       1.1   ragge 		     else return(-one);
    166       1.1   ragge 	}
    167       1.1   ragge 	/* end of x < lnhuge */
    168       1.1   ragge 
    169       1.4  simonb 	else
    170       1.1   ragge 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
    171       1.1   ragge 	    return( finite(x) ?  scalb(one,5000) : x);
    172       1.1   ragge }
    173