Home | History | Annotate | Line # | Download | only in noieee_src
n_expm1.c revision 1.7.4.1
      1  1.7.4.1    yamt /*      $NetBSD: n_expm1.c,v 1.7.4.1 2014/05/22 11:36:57 yamt Exp $ */
      2      1.1   ragge /*
      3      1.1   ragge  * Copyright (c) 1985, 1993
      4      1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5      1.1   ragge  *
      6      1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7      1.1   ragge  * modification, are permitted provided that the following conditions
      8      1.1   ragge  * are met:
      9      1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10      1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11      1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12      1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13      1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14      1.6     agc  * 3. Neither the name of the University nor the names of its contributors
     15      1.1   ragge  *    may be used to endorse or promote products derived from this software
     16      1.1   ragge  *    without specific prior written permission.
     17      1.1   ragge  *
     18      1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19      1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20      1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21      1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22      1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23      1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24      1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25      1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26      1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27      1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28      1.1   ragge  * SUCH DAMAGE.
     29      1.1   ragge  */
     30      1.1   ragge 
     31      1.1   ragge #ifndef lint
     32      1.2   ragge #if 0
     33      1.1   ragge static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
     34      1.2   ragge #endif
     35      1.1   ragge #endif /* not lint */
     36      1.1   ragge 
     37      1.1   ragge /* EXPM1(X)
     38      1.1   ragge  * RETURN THE EXPONENTIAL OF X MINUS ONE
     39      1.1   ragge  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
     40      1.4  simonb  * CODED IN C BY K.C. NG, 1/19/85;
     41      1.1   ragge  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
     42      1.1   ragge  *
     43      1.1   ragge  * Required system supported functions:
     44      1.4  simonb  *	scalb(x,n)
     45      1.4  simonb  *	copysign(x,y)
     46      1.1   ragge  *	finite(x)
     47      1.1   ragge  *
     48      1.1   ragge  * Kernel function:
     49      1.1   ragge  *	exp__E(x,c)
     50      1.1   ragge  *
     51      1.1   ragge  * Method:
     52      1.4  simonb  *	1. Argument Reduction: given the input x, find r and integer k such
     53      1.1   ragge  *	   that
     54      1.4  simonb  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     55      1.1   ragge  *	   r will be represented as r := z+c for better accuracy.
     56      1.1   ragge  *
     57      1.4  simonb  *	2. Compute EXPM1(r)=exp(r)-1 by
     58      1.1   ragge  *
     59      1.1   ragge  *			EXPM1(r=z+c) := z + exp__E(z,c)
     60      1.1   ragge  *
     61      1.1   ragge  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
     62      1.1   ragge  *
     63      1.4  simonb  * 	Remarks:
     64      1.1   ragge  *	   1. When k=1 and z < -0.25, we use the following formula for
     65      1.1   ragge  *	      better accuracy:
     66      1.1   ragge  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
     67      1.1   ragge  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
     68      1.1   ragge  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
     69      1.4  simonb  *	      when k>56.
     70      1.1   ragge  *
     71      1.1   ragge  * Special cases:
     72      1.1   ragge  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
     73      1.1   ragge  *	EXPM1(-INF)= -1;
     74      1.1   ragge  *	for finite argument, only EXPM1(0)=0 is exact.
     75      1.1   ragge  *
     76      1.1   ragge  * Accuracy:
     77      1.1   ragge  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
     78      1.1   ragge  *	1,166,000 random arguments on a VAX, the maximum observed error was
     79      1.1   ragge  *	.872 ulps (units of the last place).
     80      1.1   ragge  *
     81      1.1   ragge  * Constants:
     82      1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
     83      1.1   ragge  * The decimal values may be used, provided that the compiler will convert
     84      1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
     85      1.1   ragge  * shown.
     86      1.1   ragge  */
     87      1.1   ragge 
     88      1.5    matt #define _LIBM_STATIC
     89      1.1   ragge #include "mathimpl.h"
     90      1.1   ragge 
     91      1.1   ragge vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     92      1.1   ragge vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     93      1.1   ragge vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     94      1.1   ragge vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     95      1.1   ragge 
     96      1.1   ragge ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
     97      1.1   ragge ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
     98      1.1   ragge ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
     99      1.1   ragge ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
    100      1.1   ragge 
    101      1.1   ragge #ifdef vccast
    102      1.1   ragge #define	ln2hi	vccast(ln2hi)
    103      1.1   ragge #define	ln2lo	vccast(ln2lo)
    104      1.1   ragge #define	lnhuge	vccast(lnhuge)
    105      1.1   ragge #define	invln2	vccast(invln2)
    106      1.1   ragge #endif
    107      1.1   ragge 
    108      1.5    matt #if defined(__vax__)||defined(tahoe)
    109      1.5    matt #define PREC	56
    110      1.5    matt #else	/* defined(__vax__)||defined(tahoe) */
    111      1.5    matt #define PREC	53
    112      1.5    matt #endif	/* defined(__vax__)||defined(tahoe) */
    113      1.5    matt 
    114  1.7.4.1    yamt float
    115  1.7.4.1    yamt expm1f(float x)
    116  1.7.4.1    yamt {
    117  1.7.4.1    yamt 	return (float)expm1(x);
    118  1.7.4.1    yamt }
    119  1.7.4.1    yamt 
    120      1.5    matt double
    121      1.5    matt expm1(double x)
    122      1.1   ragge {
    123      1.7     uwe 	static const double one=1.0, half=1.0/2.0;
    124      1.1   ragge 	double  z,hi,lo,c;
    125      1.1   ragge 	int k;
    126      1.1   ragge 
    127      1.3    matt #if !defined(__vax__)&&!defined(tahoe)
    128      1.1   ragge 	if(x!=x) return(x);	/* x is NaN */
    129      1.3    matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    130      1.1   ragge 
    131      1.1   ragge 	if( x <= lnhuge ) {
    132      1.1   ragge 		if( x >= -40.0 ) {
    133      1.1   ragge 
    134      1.1   ragge 		    /* argument reduction : x - k*ln2 */
    135      1.1   ragge 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    136      1.4  simonb 			hi=x-k*ln2hi ;
    137      1.1   ragge 			z=hi-(lo=k*ln2lo);
    138      1.1   ragge 			c=(hi-z)-lo;
    139      1.1   ragge 
    140      1.1   ragge 			if(k==0) return(z+__exp__E(z,c));
    141      1.1   ragge 			if(k==1)
    142      1.4  simonb 			    if(z< -0.25)
    143      1.1   ragge 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
    144      1.1   ragge 			    else
    145      1.1   ragge 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
    146      1.1   ragge 		    /* end of k=1 */
    147      1.1   ragge 
    148      1.1   ragge 			else {
    149      1.5    matt 			    if(k<=PREC)
    150      1.1   ragge 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
    151      1.1   ragge 			    else if(k<100)
    152      1.1   ragge 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
    153      1.4  simonb 			    else
    154      1.1   ragge 			      { x = __exp__E(z,c)+z; z=one;}
    155      1.1   ragge 
    156      1.4  simonb 			    return (scalb(x+z,k));
    157      1.1   ragge 			}
    158      1.1   ragge 		}
    159      1.1   ragge 		/* end of x > lnunfl */
    160      1.1   ragge 
    161      1.4  simonb 		else
    162      1.1   ragge 		     /* expm1(-big#) rounded to -1 (inexact) */
    163      1.4  simonb 		     if(finite(x))
    164      1.2   ragge 			 { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
    165      1.1   ragge 
    166      1.1   ragge 		     /* expm1(-INF) is -1 */
    167      1.1   ragge 		     else return(-one);
    168      1.1   ragge 	}
    169      1.1   ragge 	/* end of x < lnhuge */
    170      1.1   ragge 
    171      1.4  simonb 	else
    172      1.1   ragge 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
    173      1.1   ragge 	    return( finite(x) ?  scalb(one,5000) : x);
    174      1.1   ragge }
    175