n_expm1.c revision 1.8 1 1.8 martin /* $NetBSD: n_expm1.c,v 1.8 2013/11/24 18:50:58 martin Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.6 agc * 3. Neither the name of the University nor the names of its contributors
15 1.1 ragge * may be used to endorse or promote products derived from this software
16 1.1 ragge * without specific prior written permission.
17 1.1 ragge *
18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 ragge * SUCH DAMAGE.
29 1.1 ragge */
30 1.1 ragge
31 1.1 ragge #ifndef lint
32 1.2 ragge #if 0
33 1.1 ragge static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
34 1.2 ragge #endif
35 1.1 ragge #endif /* not lint */
36 1.1 ragge
37 1.1 ragge /* EXPM1(X)
38 1.1 ragge * RETURN THE EXPONENTIAL OF X MINUS ONE
39 1.1 ragge * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
40 1.4 simonb * CODED IN C BY K.C. NG, 1/19/85;
41 1.1 ragge * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
42 1.1 ragge *
43 1.1 ragge * Required system supported functions:
44 1.4 simonb * scalb(x,n)
45 1.4 simonb * copysign(x,y)
46 1.1 ragge * finite(x)
47 1.1 ragge *
48 1.1 ragge * Kernel function:
49 1.1 ragge * exp__E(x,c)
50 1.1 ragge *
51 1.1 ragge * Method:
52 1.4 simonb * 1. Argument Reduction: given the input x, find r and integer k such
53 1.1 ragge * that
54 1.4 simonb * x = k*ln2 + r, |r| <= 0.5*ln2 .
55 1.1 ragge * r will be represented as r := z+c for better accuracy.
56 1.1 ragge *
57 1.4 simonb * 2. Compute EXPM1(r)=exp(r)-1 by
58 1.1 ragge *
59 1.1 ragge * EXPM1(r=z+c) := z + exp__E(z,c)
60 1.1 ragge *
61 1.1 ragge * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
62 1.1 ragge *
63 1.4 simonb * Remarks:
64 1.1 ragge * 1. When k=1 and z < -0.25, we use the following formula for
65 1.1 ragge * better accuracy:
66 1.1 ragge * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
67 1.1 ragge * 2. To avoid rounding error in 1-2^-k where k is large, we use
68 1.1 ragge * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
69 1.4 simonb * when k>56.
70 1.1 ragge *
71 1.1 ragge * Special cases:
72 1.1 ragge * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
73 1.1 ragge * EXPM1(-INF)= -1;
74 1.1 ragge * for finite argument, only EXPM1(0)=0 is exact.
75 1.1 ragge *
76 1.1 ragge * Accuracy:
77 1.1 ragge * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
78 1.1 ragge * 1,166,000 random arguments on a VAX, the maximum observed error was
79 1.1 ragge * .872 ulps (units of the last place).
80 1.1 ragge *
81 1.1 ragge * Constants:
82 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
83 1.1 ragge * The decimal values may be used, provided that the compiler will convert
84 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
85 1.1 ragge * shown.
86 1.1 ragge */
87 1.1 ragge
88 1.5 matt #define _LIBM_STATIC
89 1.1 ragge #include "mathimpl.h"
90 1.1 ragge
91 1.1 ragge vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
92 1.1 ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
93 1.1 ragge vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
94 1.1 ragge vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
95 1.1 ragge
96 1.1 ragge ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
97 1.1 ragge ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
98 1.1 ragge ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
99 1.1 ragge ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
100 1.1 ragge
101 1.1 ragge #ifdef vccast
102 1.1 ragge #define ln2hi vccast(ln2hi)
103 1.1 ragge #define ln2lo vccast(ln2lo)
104 1.1 ragge #define lnhuge vccast(lnhuge)
105 1.1 ragge #define invln2 vccast(invln2)
106 1.1 ragge #endif
107 1.1 ragge
108 1.5 matt #if defined(__vax__)||defined(tahoe)
109 1.5 matt #define PREC 56
110 1.5 matt #else /* defined(__vax__)||defined(tahoe) */
111 1.5 matt #define PREC 53
112 1.5 matt #endif /* defined(__vax__)||defined(tahoe) */
113 1.5 matt
114 1.8 martin float
115 1.8 martin expm1f(float x)
116 1.8 martin {
117 1.8 martin return (float)expm1(x);
118 1.8 martin }
119 1.8 martin
120 1.5 matt double
121 1.5 matt expm1(double x)
122 1.1 ragge {
123 1.7 uwe static const double one=1.0, half=1.0/2.0;
124 1.1 ragge double z,hi,lo,c;
125 1.1 ragge int k;
126 1.1 ragge
127 1.3 matt #if !defined(__vax__)&&!defined(tahoe)
128 1.1 ragge if(x!=x) return(x); /* x is NaN */
129 1.3 matt #endif /* !defined(__vax__)&&!defined(tahoe) */
130 1.1 ragge
131 1.1 ragge if( x <= lnhuge ) {
132 1.1 ragge if( x >= -40.0 ) {
133 1.1 ragge
134 1.1 ragge /* argument reduction : x - k*ln2 */
135 1.1 ragge k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
136 1.4 simonb hi=x-k*ln2hi ;
137 1.1 ragge z=hi-(lo=k*ln2lo);
138 1.1 ragge c=(hi-z)-lo;
139 1.1 ragge
140 1.1 ragge if(k==0) return(z+__exp__E(z,c));
141 1.1 ragge if(k==1)
142 1.4 simonb if(z< -0.25)
143 1.1 ragge {x=z+half;x +=__exp__E(z,c); return(x+x);}
144 1.1 ragge else
145 1.1 ragge {z+=__exp__E(z,c); x=half+z; return(x+x);}
146 1.1 ragge /* end of k=1 */
147 1.1 ragge
148 1.1 ragge else {
149 1.5 matt if(k<=PREC)
150 1.1 ragge { x=one-scalb(one,-k); z += __exp__E(z,c);}
151 1.1 ragge else if(k<100)
152 1.1 ragge { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
153 1.4 simonb else
154 1.1 ragge { x = __exp__E(z,c)+z; z=one;}
155 1.1 ragge
156 1.4 simonb return (scalb(x+z,k));
157 1.1 ragge }
158 1.1 ragge }
159 1.1 ragge /* end of x > lnunfl */
160 1.1 ragge
161 1.4 simonb else
162 1.1 ragge /* expm1(-big#) rounded to -1 (inexact) */
163 1.4 simonb if(finite(x))
164 1.2 ragge { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
165 1.1 ragge
166 1.1 ragge /* expm1(-INF) is -1 */
167 1.1 ragge else return(-one);
168 1.1 ragge }
169 1.1 ragge /* end of x < lnhuge */
170 1.1 ragge
171 1.4 simonb else
172 1.1 ragge /* expm1(INF) is INF, expm1(+big#) overflows to INF */
173 1.1 ragge return( finite(x) ? scalb(one,5000) : x);
174 1.1 ragge }
175