Home | History | Annotate | Line # | Download | only in noieee_src
n_expm1.c revision 1.2
      1 /*      $NetBSD: n_expm1.c,v 1.2 1997/10/20 14:12:26 ragge Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)expm1.c	8.1 (Berkeley) 6/4/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 /* EXPM1(X)
     42  * RETURN THE EXPONENTIAL OF X MINUS ONE
     43  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
     44  * CODED IN C BY K.C. NG, 1/19/85;
     45  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
     46  *
     47  * Required system supported functions:
     48  *	scalb(x,n)
     49  *	copysign(x,y)
     50  *	finite(x)
     51  *
     52  * Kernel function:
     53  *	exp__E(x,c)
     54  *
     55  * Method:
     56  *	1. Argument Reduction: given the input x, find r and integer k such
     57  *	   that
     58  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     59  *	   r will be represented as r := z+c for better accuracy.
     60  *
     61  *	2. Compute EXPM1(r)=exp(r)-1 by
     62  *
     63  *			EXPM1(r=z+c) := z + exp__E(z,c)
     64  *
     65  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
     66  *
     67  * 	Remarks:
     68  *	   1. When k=1 and z < -0.25, we use the following formula for
     69  *	      better accuracy:
     70  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
     71  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
     72  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
     73  *	      when k>56.
     74  *
     75  * Special cases:
     76  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
     77  *	EXPM1(-INF)= -1;
     78  *	for finite argument, only EXPM1(0)=0 is exact.
     79  *
     80  * Accuracy:
     81  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
     82  *	1,166,000 random arguments on a VAX, the maximum observed error was
     83  *	.872 ulps (units of the last place).
     84  *
     85  * Constants:
     86  * The hexadecimal values are the intended ones for the following constants.
     87  * The decimal values may be used, provided that the compiler will convert
     88  * from decimal to binary accurately enough to produce the hexadecimal values
     89  * shown.
     90  */
     91 
     92 #include "mathimpl.h"
     93 
     94 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     95 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     96 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     97 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     98 
     99 ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
    100 ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
    101 ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
    102 ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)
    103 
    104 #ifdef vccast
    105 #define	ln2hi	vccast(ln2hi)
    106 #define	ln2lo	vccast(ln2lo)
    107 #define	lnhuge	vccast(lnhuge)
    108 #define	invln2	vccast(invln2)
    109 #endif
    110 
    111 double expm1(x)
    112 double x;
    113 {
    114 	const static double one=1.0, half=1.0/2.0;
    115 	double  z,hi,lo,c;
    116 	int k;
    117 #if defined(vax)||defined(tahoe)
    118 	static prec=56;
    119 #else	/* defined(vax)||defined(tahoe) */
    120 	static prec=53;
    121 #endif	/* defined(vax)||defined(tahoe) */
    122 
    123 #if !defined(vax)&&!defined(tahoe)
    124 	if(x!=x) return(x);	/* x is NaN */
    125 #endif	/* !defined(vax)&&!defined(tahoe) */
    126 
    127 	if( x <= lnhuge ) {
    128 		if( x >= -40.0 ) {
    129 
    130 		    /* argument reduction : x - k*ln2 */
    131 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    132 			hi=x-k*ln2hi ;
    133 			z=hi-(lo=k*ln2lo);
    134 			c=(hi-z)-lo;
    135 
    136 			if(k==0) return(z+__exp__E(z,c));
    137 			if(k==1)
    138 			    if(z< -0.25)
    139 				{x=z+half;x +=__exp__E(z,c); return(x+x);}
    140 			    else
    141 				{z+=__exp__E(z,c); x=half+z; return(x+x);}
    142 		    /* end of k=1 */
    143 
    144 			else {
    145 			    if(k<=prec)
    146 			      { x=one-scalb(one,-k); z += __exp__E(z,c);}
    147 			    else if(k<100)
    148 			      { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
    149 			    else
    150 			      { x = __exp__E(z,c)+z; z=one;}
    151 
    152 			    return (scalb(x+z,k));
    153 			}
    154 		}
    155 		/* end of x > lnunfl */
    156 
    157 		else
    158 		     /* expm1(-big#) rounded to -1 (inexact) */
    159 		     if(finite(x))
    160 			 { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
    161 
    162 		     /* expm1(-INF) is -1 */
    163 		     else return(-one);
    164 	}
    165 	/* end of x < lnhuge */
    166 
    167 	else
    168 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
    169 	    return( finite(x) ?  scalb(one,5000) : x);
    170 }
    171