n_expm1.c revision 1.5 1 /* $NetBSD: n_expm1.c,v 1.5 2002/06/15 00:10:17 matt Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
38 #endif
39 #endif /* not lint */
40
41 /* EXPM1(X)
42 * RETURN THE EXPONENTIAL OF X MINUS ONE
43 * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
44 * CODED IN C BY K.C. NG, 1/19/85;
45 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
46 *
47 * Required system supported functions:
48 * scalb(x,n)
49 * copysign(x,y)
50 * finite(x)
51 *
52 * Kernel function:
53 * exp__E(x,c)
54 *
55 * Method:
56 * 1. Argument Reduction: given the input x, find r and integer k such
57 * that
58 * x = k*ln2 + r, |r| <= 0.5*ln2 .
59 * r will be represented as r := z+c for better accuracy.
60 *
61 * 2. Compute EXPM1(r)=exp(r)-1 by
62 *
63 * EXPM1(r=z+c) := z + exp__E(z,c)
64 *
65 * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
66 *
67 * Remarks:
68 * 1. When k=1 and z < -0.25, we use the following formula for
69 * better accuracy:
70 * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
71 * 2. To avoid rounding error in 1-2^-k where k is large, we use
72 * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
73 * when k>56.
74 *
75 * Special cases:
76 * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
77 * EXPM1(-INF)= -1;
78 * for finite argument, only EXPM1(0)=0 is exact.
79 *
80 * Accuracy:
81 * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
82 * 1,166,000 random arguments on a VAX, the maximum observed error was
83 * .872 ulps (units of the last place).
84 *
85 * Constants:
86 * The hexadecimal values are the intended ones for the following constants.
87 * The decimal values may be used, provided that the compiler will convert
88 * from decimal to binary accurately enough to produce the hexadecimal values
89 * shown.
90 */
91
92 #define _LIBM_STATIC
93 #include "mathimpl.h"
94
95 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
96 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
97 vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
98 vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
99
100 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
101 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
102 ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
103 ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
104
105 #ifdef vccast
106 #define ln2hi vccast(ln2hi)
107 #define ln2lo vccast(ln2lo)
108 #define lnhuge vccast(lnhuge)
109 #define invln2 vccast(invln2)
110 #endif
111
112 #if defined(__vax__)||defined(tahoe)
113 #define PREC 56
114 #else /* defined(__vax__)||defined(tahoe) */
115 #define PREC 53
116 #endif /* defined(__vax__)||defined(tahoe) */
117
118 double
119 expm1(double x)
120 {
121 const static double one=1.0, half=1.0/2.0;
122 double z,hi,lo,c;
123 int k;
124
125 #if !defined(__vax__)&&!defined(tahoe)
126 if(x!=x) return(x); /* x is NaN */
127 #endif /* !defined(__vax__)&&!defined(tahoe) */
128
129 if( x <= lnhuge ) {
130 if( x >= -40.0 ) {
131
132 /* argument reduction : x - k*ln2 */
133 k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
134 hi=x-k*ln2hi ;
135 z=hi-(lo=k*ln2lo);
136 c=(hi-z)-lo;
137
138 if(k==0) return(z+__exp__E(z,c));
139 if(k==1)
140 if(z< -0.25)
141 {x=z+half;x +=__exp__E(z,c); return(x+x);}
142 else
143 {z+=__exp__E(z,c); x=half+z; return(x+x);}
144 /* end of k=1 */
145
146 else {
147 if(k<=PREC)
148 { x=one-scalb(one,-k); z += __exp__E(z,c);}
149 else if(k<100)
150 { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
151 else
152 { x = __exp__E(z,c)+z; z=one;}
153
154 return (scalb(x+z,k));
155 }
156 }
157 /* end of x > lnunfl */
158
159 else
160 /* expm1(-big#) rounded to -1 (inexact) */
161 if(finite(x))
162 { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */
163
164 /* expm1(-INF) is -1 */
165 else return(-one);
166 }
167 /* end of x < lnhuge */
168
169 else
170 /* expm1(INF) is INF, expm1(+big#) overflows to INF */
171 return( finite(x) ? scalb(one,5000) : x);
172 }
173