n_gamma.c revision 1.2 1 /* $NetBSD: n_gamma.c,v 1.2 1997/10/20 14:12:39 ragge Exp $ */
2 /*-
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93";
38 #endif
39 #endif /* not lint */
40
41 /*
42 * This code by P. McIlroy, Oct 1992;
43 *
44 * The financial support of UUNET Communications Services is greatfully
45 * acknowledged.
46 */
47
48 #include <math.h>
49 #include "mathimpl.h"
50 #include <errno.h>
51
52 /* METHOD:
53 * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
54 * At negative integers, return +Inf, and set errno.
55 *
56 * x < 6.5:
57 * Use argument reduction G(x+1) = xG(x) to reach the
58 * range [1.066124,2.066124]. Use a rational
59 * approximation centered at the minimum (x0+1) to
60 * ensure monotonicity.
61 *
62 * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
63 * adjusted for equal-ripples:
64 *
65 * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
66 *
67 * Keep extra precision in multiplying (x-.5)(log(x)-1), to
68 * avoid premature round-off.
69 *
70 * Special values:
71 * non-positive integer: Set overflow trap; return +Inf;
72 * x > 171.63: Set overflow trap; return +Inf;
73 * NaN: Set invalid trap; return NaN
74 *
75 * Accuracy: Gamma(x) is accurate to within
76 * x > 0: error provably < 0.9ulp.
77 * Maximum observed in 1,000,000 trials was .87ulp.
78 * x < 0:
79 * Maximum observed error < 4ulp in 1,000,000 trials.
80 */
81
82 static double neg_gam __P((double));
83 static double small_gam __P((double));
84 static double smaller_gam __P((double));
85 static struct Double large_gam __P((double));
86 static struct Double ratfun_gam __P((double, double));
87
88 /*
89 * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
90 * [1.066.., 2.066..] accurate to 4.25e-19.
91 */
92 #define LEFT -.3955078125 /* left boundary for rat. approx */
93 #define x0 .461632144968362356785 /* xmin - 1 */
94
95 #define a0_hi 0.88560319441088874992
96 #define a0_lo -.00000000000000004996427036469019695
97 #define P0 6.21389571821820863029017800727e-01
98 #define P1 2.65757198651533466104979197553e-01
99 #define P2 5.53859446429917461063308081748e-03
100 #define P3 1.38456698304096573887145282811e-03
101 #define P4 2.40659950032711365819348969808e-03
102 #define Q0 1.45019531250000000000000000000e+00
103 #define Q1 1.06258521948016171343454061571e+00
104 #define Q2 -2.07474561943859936441469926649e-01
105 #define Q3 -1.46734131782005422506287573015e-01
106 #define Q4 3.07878176156175520361557573779e-02
107 #define Q5 5.12449347980666221336054633184e-03
108 #define Q6 -1.76012741431666995019222898833e-03
109 #define Q7 9.35021023573788935372153030556e-05
110 #define Q8 6.13275507472443958924745652239e-06
111 /*
112 * Constants for large x approximation (x in [6, Inf])
113 * (Accurate to 2.8*10^-19 absolute)
114 */
115 #define lns2pi_hi 0.418945312500000
116 #define lns2pi_lo -.000006779295327258219670263595
117 #define Pa0 8.33333333333333148296162562474e-02
118 #define Pa1 -2.77777777774548123579378966497e-03
119 #define Pa2 7.93650778754435631476282786423e-04
120 #define Pa3 -5.95235082566672847950717262222e-04
121 #define Pa4 8.41428560346653702135821806252e-04
122 #define Pa5 -1.89773526463879200348872089421e-03
123 #define Pa6 5.69394463439411649408050664078e-03
124 #define Pa7 -1.44705562421428915453880392761e-02
125
126 static const double zero = 0., one = 1.0, tiny = 1e-300;
127 static int endian;
128 /*
129 * TRUNC sets trailing bits in a floating-point number to zero.
130 * is a temporary variable.
131 */
132 #if defined(vax) || defined(tahoe)
133 #define _IEEE 0
134 #define TRUNC(x) x = (double) (float) (x)
135 #else
136 #define _IEEE 1
137 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
138 #define infnan(x) 0.0
139 #endif
140
141 double
142 gamma(x)
143 double x;
144 {
145 double b;
146 struct Double u;
147 endian = (*(int *) &one) ? 1 : 0;
148
149 if (x >= 6) {
150 if(x > 171.63)
151 return(one/zero);
152 u = large_gam(x);
153 return(__exp__D(u.a, u.b));
154 } else if (x >= 1.0 + LEFT + x0)
155 return (small_gam(x));
156 else if (x > 1.e-17)
157 return (smaller_gam(x));
158 else if (x > -1.e-17) {
159 if (x == 0.0)
160 if (!_IEEE) return (infnan(ERANGE));
161 else return (one/x);
162 b =one+1e-20; /* Raise inexact flag. ??? -ragge */
163 return (one/x);
164 } else if (!finite(x)) {
165 if (_IEEE) /* x = NaN, -Inf */
166 return (x*x);
167 else
168 return (infnan(EDOM));
169 } else
170 return (neg_gam(x));
171 }
172 /*
173 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
174 */
175 static struct Double
176 large_gam(x)
177 double x;
178 {
179 double z, p;
180 struct Double t, u, v;
181
182 z = one/(x*x);
183 p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
184 p = p/x;
185
186 u = __log__D(x);
187 u.a -= one;
188 v.a = (x -= .5);
189 TRUNC(v.a);
190 v.b = x - v.a;
191 t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
192 t.b = v.b*u.a + x*u.b;
193 /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
194 t.b += lns2pi_lo; t.b += p;
195 u.a = lns2pi_hi + t.b; u.a += t.a;
196 u.b = t.a - u.a;
197 u.b += lns2pi_hi; u.b += t.b;
198 return (u);
199 }
200 /*
201 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
202 * It also has correct monotonicity.
203 */
204 static double
205 small_gam(x)
206 double x;
207 {
208 double y, ym1, t;
209 struct Double yy, r;
210 y = x - one;
211 ym1 = y - one;
212 if (y <= 1.0 + (LEFT + x0)) {
213 yy = ratfun_gam(y - x0, 0);
214 return (yy.a + yy.b);
215 }
216 r.a = y;
217 TRUNC(r.a);
218 yy.a = r.a - one;
219 y = ym1;
220 yy.b = r.b = y - yy.a;
221 /* Argument reduction: G(x+1) = x*G(x) */
222 for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
223 t = r.a*yy.a;
224 r.b = r.a*yy.b + y*r.b;
225 r.a = t;
226 TRUNC(r.a);
227 r.b += (t - r.a);
228 }
229 /* Return r*gamma(y). */
230 yy = ratfun_gam(y - x0, 0);
231 y = r.b*(yy.a + yy.b) + r.a*yy.b;
232 y += yy.a*r.a;
233 return (y);
234 }
235 /*
236 * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
237 */
238 static double
239 smaller_gam(x)
240 double x;
241 {
242 double t, d;
243 struct Double r, xx;
244 if (x < x0 + LEFT) {
245 t = x, TRUNC(t);
246 d = (t+x)*(x-t);
247 t *= t;
248 xx.a = (t + x), TRUNC(xx.a);
249 xx.b = x - xx.a; xx.b += t; xx.b += d;
250 t = (one-x0); t += x;
251 d = (one-x0); d -= t; d += x;
252 x = xx.a + xx.b;
253 } else {
254 xx.a = x, TRUNC(xx.a);
255 xx.b = x - xx.a;
256 t = x - x0;
257 d = (-x0 -t); d += x;
258 }
259 r = ratfun_gam(t, d);
260 d = r.a/x, TRUNC(d);
261 r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
262 return (d + r.a/x);
263 }
264 /*
265 * returns (z+c)^2 * P(z)/Q(z) + a0
266 */
267 static struct Double
268 ratfun_gam(z, c)
269 double z, c;
270 {
271 double p, q;
272 struct Double r, t;
273
274 q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
275 p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
276
277 /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
278 p = p/q;
279 t.a = z, TRUNC(t.a); /* t ~= z + c */
280 t.b = (z - t.a) + c;
281 t.b *= (t.a + z);
282 q = (t.a *= t.a); /* t = (z+c)^2 */
283 TRUNC(t.a);
284 t.b += (q - t.a);
285 r.a = p, TRUNC(r.a); /* r = P/Q */
286 r.b = p - r.a;
287 t.b = t.b*p + t.a*r.b + a0_lo;
288 t.a *= r.a; /* t = (z+c)^2*(P/Q) */
289 r.a = t.a + a0_hi, TRUNC(r.a);
290 r.b = ((a0_hi-r.a) + t.a) + t.b;
291 return (r); /* r = a0 + t */
292 }
293
294 static double
295 neg_gam(x)
296 double x;
297 {
298 int sgn = 1;
299 struct Double lg, lsine;
300 double y, z;
301
302 y = floor(x + .5);
303 if (y == x) /* Negative integer. */
304 if(!_IEEE)
305 return (infnan(ERANGE));
306 else
307 return (one/zero);
308 z = fabs(x - y);
309 y = .5*ceil(x);
310 if (y == ceil(y))
311 sgn = -1;
312 if (z < .25)
313 z = sin(M_PI*z);
314 else
315 z = cos(M_PI*(0.5-z));
316 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
317 if (x < -170) {
318 if (x < -190)
319 return ((double)sgn*tiny*tiny);
320 y = one - x; /* exact: 128 < |x| < 255 */
321 lg = large_gam(y);
322 lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
323 lg.a -= lsine.a; /* exact (opposite signs) */
324 lg.b -= lsine.b;
325 y = -(lg.a + lg.b);
326 z = (y + lg.a) + lg.b;
327 y = __exp__D(y, z);
328 if (sgn < 0) y = -y;
329 return (y);
330 }
331 y = one-x;
332 if (one-y == x)
333 y = gamma(y);
334 else /* 1-x is inexact */
335 y = -x*gamma(-x);
336 if (sgn < 0) y = -y;
337 return (M_PI / (y*z));
338 }
339