Home | History | Annotate | Line # | Download | only in noieee_src
n_j0.c revision 1.4.10.1
      1  1.4.10.1   lukem /*	$NetBSD: n_j0.c,v 1.4.10.1 2002/06/18 13:39:40 lukem Exp $	*/
      2       1.1   ragge /*-
      3       1.1   ragge  * Copyright (c) 1992, 1993
      4       1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5       1.1   ragge  *
      6       1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7       1.1   ragge  * modification, are permitted provided that the following conditions
      8       1.1   ragge  * are met:
      9       1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10       1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11       1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14       1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15       1.1   ragge  *    must display the following acknowledgement:
     16       1.1   ragge  *	This product includes software developed by the University of
     17       1.1   ragge  *	California, Berkeley and its contributors.
     18       1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19       1.1   ragge  *    may be used to endorse or promote products derived from this software
     20       1.1   ragge  *    without specific prior written permission.
     21       1.1   ragge  *
     22       1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1   ragge  * SUCH DAMAGE.
     33       1.1   ragge  */
     34       1.1   ragge 
     35       1.1   ragge #ifndef lint
     36       1.2   ragge #if 0
     37       1.1   ragge static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
     38       1.2   ragge #endif
     39       1.1   ragge #endif /* not lint */
     40       1.1   ragge 
     41       1.1   ragge /*
     42       1.1   ragge  * 16 December 1992
     43       1.1   ragge  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     44       1.1   ragge  */
     45       1.1   ragge 
     46       1.1   ragge /*
     47       1.1   ragge  * ====================================================
     48       1.1   ragge  * Copyright (C) 1992 by Sun Microsystems, Inc.
     49       1.1   ragge  *
     50       1.1   ragge  * Developed at SunPro, a Sun Microsystems, Inc. business.
     51       1.1   ragge  * Permission to use, copy, modify, and distribute this
     52       1.4  simonb  * software is freely granted, provided that this notice
     53       1.1   ragge  * is preserved.
     54       1.1   ragge  * ====================================================
     55       1.1   ragge  *
     56       1.1   ragge  * ******************* WARNING ********************
     57       1.1   ragge  * This is an alpha version of SunPro's FDLIBM (Freely
     58       1.4  simonb  * Distributable Math Library) for IEEE double precision
     59       1.1   ragge  * arithmetic. FDLIBM is a basic math library written
     60       1.4  simonb  * in C that runs on machines that conform to IEEE
     61       1.4  simonb  * Standard 754/854. This alpha version is distributed
     62       1.4  simonb  * for testing purpose. Those who use this software
     63       1.4  simonb  * should report any bugs to
     64       1.1   ragge  *
     65       1.1   ragge  *		fdlibm-comments (at) sunpro.eng.sun.com
     66       1.1   ragge  *
     67       1.1   ragge  * -- K.C. Ng, Oct 12, 1992
     68       1.1   ragge  * ************************************************
     69       1.1   ragge  */
     70       1.1   ragge 
     71       1.1   ragge /* double j0(double x), y0(double x)
     72       1.1   ragge  * Bessel function of the first and second kinds of order zero.
     73       1.1   ragge  * Method -- j0(x):
     74       1.1   ragge  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
     75       1.1   ragge  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
     76       1.1   ragge  *	   for x in (0,2)
     77       1.1   ragge  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
     78       1.1   ragge  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
     79       1.1   ragge  *	   for x in (2,inf)
     80       1.1   ragge  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
     81       1.1   ragge  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
     82       1.1   ragge  *	   as follow:
     83       1.1   ragge  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
     84       1.1   ragge  *			= 1/sqrt(2) * (cos(x) + sin(x))
     85       1.1   ragge  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
     86       1.1   ragge  *			= 1/sqrt(2) * (sin(x) - cos(x))
     87       1.1   ragge  * 	   (To avoid cancellation, use
     88       1.1   ragge  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     89       1.1   ragge  * 	    to compute the worse one.)
     90       1.4  simonb  *
     91       1.1   ragge  *	3 Special cases
     92       1.1   ragge  *		j0(nan)= nan
     93       1.1   ragge  *		j0(0) = 1
     94       1.1   ragge  *		j0(inf) = 0
     95       1.4  simonb  *
     96       1.1   ragge  * Method -- y0(x):
     97       1.1   ragge  *	1. For x<2.
     98       1.4  simonb  *	   Since
     99       1.1   ragge  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
    100       1.1   ragge  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
    101       1.1   ragge  *	   We use the following function to approximate y0,
    102       1.1   ragge  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
    103       1.4  simonb  *	   where
    104       1.1   ragge  *		U(z) = u0 + u1*z + ... + u6*z^6
    105       1.1   ragge  *		V(z) = 1  + v1*z + ... + v4*z^4
    106       1.1   ragge  *	   with absolute approximation error bounded by 2**-72.
    107       1.1   ragge  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
    108       1.1   ragge  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
    109       1.1   ragge  *	2. For x>=2.
    110       1.1   ragge  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
    111       1.1   ragge  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
    112       1.1   ragge  *	   by the method mentioned above.
    113       1.1   ragge  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
    114       1.1   ragge  */
    115       1.1   ragge 
    116       1.2   ragge #include "mathimpl.h"
    117       1.1   ragge #include <float.h>
    118       1.1   ragge #include <errno.h>
    119       1.1   ragge 
    120       1.3    matt #if defined(__vax__) || defined(tahoe)
    121       1.1   ragge #define _IEEE	0
    122       1.1   ragge #else
    123       1.1   ragge #define _IEEE	1
    124       1.1   ragge #define infnan(x) (0.0)
    125       1.1   ragge #endif
    126       1.1   ragge 
    127  1.4.10.1   lukem static double pzero (double), qzero (double);
    128       1.1   ragge 
    129  1.4.10.1   lukem static const double
    130       1.1   ragge huge 	= 1e300,
    131       1.1   ragge zero    = 0.0,
    132       1.1   ragge one	= 1.0,
    133       1.1   ragge invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    134       1.1   ragge tpi	= 0.636619772367581343075535053490057448,
    135       1.1   ragge  		/* R0/S0 on [0, 2.00] */
    136       1.1   ragge r02 =   1.562499999999999408594634421055018003102e-0002,
    137       1.1   ragge r03 =  -1.899792942388547334476601771991800712355e-0004,
    138       1.1   ragge r04 =   1.829540495327006565964161150603950916854e-0006,
    139       1.1   ragge r05 =  -4.618326885321032060803075217804816988758e-0009,
    140       1.1   ragge s01 =   1.561910294648900170180789369288114642057e-0002,
    141       1.1   ragge s02 =   1.169267846633374484918570613449245536323e-0004,
    142       1.1   ragge s03 =   5.135465502073181376284426245689510134134e-0007,
    143       1.1   ragge s04 =   1.166140033337900097836930825478674320464e-0009;
    144       1.1   ragge 
    145       1.1   ragge double
    146  1.4.10.1   lukem j0(double x)
    147       1.1   ragge {
    148       1.1   ragge 	double z, s,c,ss,cc,r,u,v;
    149       1.1   ragge 
    150       1.3    matt 	if (!finite(x)) {
    151       1.1   ragge 		if (_IEEE) return one/(x*x);
    152       1.1   ragge 		else return (0);
    153       1.3    matt 	}
    154       1.1   ragge 	x = fabs(x);
    155       1.1   ragge 	if (x >= 2.0) {	/* |x| >= 2.0 */
    156       1.1   ragge 		s = sin(x);
    157       1.1   ragge 		c = cos(x);
    158       1.1   ragge 		ss = s-c;
    159       1.1   ragge 		cc = s+c;
    160       1.1   ragge 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    161       1.1   ragge 		    z = -cos(x+x);
    162       1.1   ragge 		    if ((s*c)<zero) cc = z/ss;
    163       1.1   ragge 		    else 	    ss = z/cc;
    164       1.1   ragge 		}
    165       1.1   ragge 	/*
    166       1.1   ragge 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    167       1.1   ragge 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    168       1.1   ragge 	 */
    169       1.1   ragge 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
    170       1.1   ragge 			z = (invsqrtpi*cc)/sqrt(x);
    171       1.1   ragge 		else {
    172       1.1   ragge 		    u = pzero(x); v = qzero(x);
    173       1.1   ragge 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
    174       1.1   ragge 		}
    175       1.1   ragge 		return z;
    176       1.1   ragge 	}
    177       1.1   ragge 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
    178       1.1   ragge 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
    179       1.1   ragge 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
    180       1.1   ragge 			return one;
    181       1.1   ragge 	        else return (one - 0.25*x*x);
    182       1.1   ragge 	    }
    183       1.1   ragge 	}
    184       1.1   ragge 	z = x*x;
    185       1.1   ragge 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
    186       1.1   ragge 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
    187       1.1   ragge 	if (x < one) {			/* |x| < 1.00 */
    188       1.1   ragge 	    return (one + z*(-0.25+(r/s)));
    189       1.1   ragge 	} else {
    190       1.1   ragge 	    u = 0.5*x;
    191       1.1   ragge 	    return ((one+u)*(one-u)+z*(r/s));
    192       1.1   ragge 	}
    193       1.1   ragge }
    194       1.1   ragge 
    195  1.4.10.1   lukem static const double
    196       1.1   ragge u00 =  -7.380429510868722527422411862872999615628e-0002,
    197       1.1   ragge u01 =   1.766664525091811069896442906220827182707e-0001,
    198       1.1   ragge u02 =  -1.381856719455968955440002438182885835344e-0002,
    199       1.1   ragge u03 =   3.474534320936836562092566861515617053954e-0004,
    200       1.1   ragge u04 =  -3.814070537243641752631729276103284491172e-0006,
    201       1.1   ragge u05 =   1.955901370350229170025509706510038090009e-0008,
    202       1.1   ragge u06 =  -3.982051941321034108350630097330144576337e-0011,
    203       1.1   ragge v01 =   1.273048348341237002944554656529224780561e-0002,
    204       1.1   ragge v02 =   7.600686273503532807462101309675806839635e-0005,
    205       1.1   ragge v03 =   2.591508518404578033173189144579208685163e-0007,
    206       1.1   ragge v04 =   4.411103113326754838596529339004302243157e-0010;
    207       1.1   ragge 
    208       1.1   ragge double
    209  1.4.10.1   lukem y0(double x)
    210       1.1   ragge {
    211       1.1   ragge 	double z, s, c, ss, cc, u, v;
    212       1.1   ragge     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
    213       1.3    matt 	if (!finite(x)) {
    214       1.1   ragge 		if (_IEEE)
    215       1.1   ragge 			return (one/(x+x*x));
    216       1.1   ragge 		else
    217       1.1   ragge 			return (0);
    218       1.3    matt 	}
    219       1.3    matt         if (x == 0) {
    220       1.1   ragge 		if (_IEEE)	return (-one/zero);
    221       1.1   ragge 		else		return(infnan(-ERANGE));
    222       1.3    matt 	}
    223       1.3    matt         if (x<0) {
    224       1.1   ragge 		if (_IEEE)	return (zero/zero);
    225       1.1   ragge 		else		return (infnan(EDOM));
    226       1.3    matt 	}
    227       1.1   ragge         if (x >= 2.00) {	/* |x| >= 2.0 */
    228       1.1   ragge         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
    229       1.1   ragge          * where x0 = x-pi/4
    230       1.1   ragge          *      Better formula:
    231       1.1   ragge          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    232       1.1   ragge          *                      =  1/sqrt(2) * (sin(x) + cos(x))
    233       1.1   ragge          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    234       1.1   ragge          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    235       1.1   ragge          * To avoid cancellation, use
    236       1.1   ragge          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    237       1.1   ragge          * to compute the worse one.
    238       1.1   ragge          */
    239       1.1   ragge                 s = sin(x);
    240       1.1   ragge                 c = cos(x);
    241       1.1   ragge                 ss = s-c;
    242       1.1   ragge                 cc = s+c;
    243       1.1   ragge 	/*
    244       1.1   ragge 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    245       1.1   ragge 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    246       1.1   ragge 	 */
    247       1.1   ragge                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    248       1.1   ragge                     z = -cos(x+x);
    249       1.1   ragge                     if ((s*c)<zero) cc = z/ss;
    250       1.1   ragge                     else            ss = z/cc;
    251       1.1   ragge                 }
    252       1.1   ragge                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
    253       1.1   ragge 			z = (invsqrtpi*ss)/sqrt(x);
    254       1.1   ragge                 else {
    255       1.1   ragge                     u = pzero(x); v = qzero(x);
    256       1.1   ragge                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    257       1.1   ragge                 }
    258       1.1   ragge                 return z;
    259       1.1   ragge 	}
    260       1.1   ragge 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
    261       1.1   ragge 	    return (u00 + tpi*log(x));
    262       1.1   ragge 	}
    263       1.1   ragge 	z = x*x;
    264       1.1   ragge 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
    265       1.1   ragge 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
    266       1.1   ragge 	return (u/v + tpi*(j0(x)*log(x)));
    267       1.1   ragge }
    268       1.1   ragge 
    269       1.1   ragge /* The asymptotic expansions of pzero is
    270       1.1   ragge  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
    271       1.1   ragge  * For x >= 2, We approximate pzero by
    272       1.1   ragge  * 	pzero(x) = 1 + (R/S)
    273       1.1   ragge  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    274       1.1   ragge  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    275       1.1   ragge  * and
    276       1.1   ragge  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
    277       1.1   ragge  */
    278  1.4.10.1   lukem static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    279       1.1   ragge    0.0,
    280       1.1   ragge   -7.031249999999003994151563066182798210142e-0002,
    281       1.1   ragge   -8.081670412753498508883963849859423939871e+0000,
    282       1.1   ragge   -2.570631056797048755890526455854482662510e+0002,
    283       1.1   ragge   -2.485216410094288379417154382189125598962e+0003,
    284       1.1   ragge   -5.253043804907295692946647153614119665649e+0003,
    285       1.1   ragge };
    286  1.4.10.1   lukem static const double ps8[5] = {
    287       1.1   ragge    1.165343646196681758075176077627332052048e+0002,
    288       1.1   ragge    3.833744753641218451213253490882686307027e+0003,
    289       1.1   ragge    4.059785726484725470626341023967186966531e+0004,
    290       1.1   ragge    1.167529725643759169416844015694440325519e+0005,
    291       1.1   ragge    4.762772841467309430100106254805711722972e+0004,
    292       1.1   ragge };
    293       1.1   ragge 
    294  1.4.10.1   lukem static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    295       1.1   ragge   -1.141254646918944974922813501362824060117e-0011,
    296       1.1   ragge   -7.031249408735992804117367183001996028304e-0002,
    297       1.1   ragge   -4.159610644705877925119684455252125760478e+0000,
    298       1.1   ragge   -6.767476522651671942610538094335912346253e+0001,
    299       1.1   ragge   -3.312312996491729755731871867397057689078e+0002,
    300       1.1   ragge   -3.464333883656048910814187305901796723256e+0002,
    301       1.1   ragge };
    302  1.4.10.1   lukem static const double ps5[5] = {
    303       1.1   ragge    6.075393826923003305967637195319271932944e+0001,
    304       1.1   ragge    1.051252305957045869801410979087427910437e+0003,
    305       1.1   ragge    5.978970943338558182743915287887408780344e+0003,
    306       1.1   ragge    9.625445143577745335793221135208591603029e+0003,
    307       1.1   ragge    2.406058159229391070820491174867406875471e+0003,
    308       1.1   ragge };
    309       1.1   ragge 
    310  1.4.10.1   lukem static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    311       1.1   ragge   -2.547046017719519317420607587742992297519e-0009,
    312       1.1   ragge   -7.031196163814817199050629727406231152464e-0002,
    313       1.1   ragge   -2.409032215495295917537157371488126555072e+0000,
    314       1.1   ragge   -2.196597747348830936268718293366935843223e+0001,
    315       1.1   ragge   -5.807917047017375458527187341817239891940e+0001,
    316       1.1   ragge   -3.144794705948885090518775074177485744176e+0001,
    317       1.1   ragge };
    318  1.4.10.1   lukem static const double ps3[5] = {
    319       1.1   ragge    3.585603380552097167919946472266854507059e+0001,
    320       1.1   ragge    3.615139830503038919981567245265266294189e+0002,
    321       1.1   ragge    1.193607837921115243628631691509851364715e+0003,
    322       1.1   ragge    1.127996798569074250675414186814529958010e+0003,
    323       1.1   ragge    1.735809308133357510239737333055228118910e+0002,
    324       1.1   ragge };
    325       1.1   ragge 
    326  1.4.10.1   lukem static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    327       1.1   ragge   -8.875343330325263874525704514800809730145e-0008,
    328       1.1   ragge   -7.030309954836247756556445443331044338352e-0002,
    329       1.1   ragge   -1.450738467809529910662233622603401167409e+0000,
    330       1.1   ragge   -7.635696138235277739186371273434739292491e+0000,
    331       1.1   ragge   -1.119316688603567398846655082201614524650e+0001,
    332       1.1   ragge   -3.233645793513353260006821113608134669030e+0000,
    333       1.1   ragge };
    334  1.4.10.1   lukem static const double ps2[5] = {
    335       1.1   ragge    2.222029975320888079364901247548798910952e+0001,
    336       1.1   ragge    1.362067942182152109590340823043813120940e+0002,
    337       1.1   ragge    2.704702786580835044524562897256790293238e+0002,
    338       1.1   ragge    1.538753942083203315263554770476850028583e+0002,
    339       1.1   ragge    1.465761769482561965099880599279699314477e+0001,
    340       1.1   ragge };
    341       1.1   ragge 
    342  1.4.10.1   lukem static double
    343  1.4.10.1   lukem pzero(double x)
    344       1.1   ragge {
    345  1.4.10.1   lukem 	const double *p,*q;
    346  1.4.10.1   lukem 	double z,r,s;
    347       1.1   ragge 	if (x >= 8.00)			   {p = pr8; q= ps8;}
    348       1.1   ragge 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
    349       1.1   ragge 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
    350       1.2   ragge 	else /* if (x >= 2.00) */	   {p = pr2; q= ps2;}
    351       1.1   ragge 	z = one/(x*x);
    352       1.1   ragge 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    353       1.1   ragge 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    354       1.1   ragge 	return one+ r/s;
    355       1.1   ragge }
    356       1.4  simonb 
    357       1.1   ragge 
    358       1.1   ragge /* For x >= 8, the asymptotic expansions of qzero is
    359       1.1   ragge  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
    360       1.1   ragge  * We approximate pzero by
    361       1.1   ragge  * 	qzero(x) = s*(-1.25 + (R/S))
    362       1.1   ragge  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    363       1.1   ragge  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
    364       1.1   ragge  * and
    365       1.1   ragge  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
    366       1.1   ragge  */
    367  1.4.10.1   lukem static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    368       1.1   ragge    0.0,
    369       1.1   ragge    7.324218749999350414479738504551775297096e-0002,
    370       1.1   ragge    1.176820646822526933903301695932765232456e+0001,
    371       1.1   ragge    5.576733802564018422407734683549251364365e+0002,
    372       1.1   ragge    8.859197207564685717547076568608235802317e+0003,
    373       1.1   ragge    3.701462677768878501173055581933725704809e+0004,
    374       1.1   ragge };
    375  1.4.10.1   lukem static const double qs8[6] = {
    376       1.1   ragge    1.637760268956898345680262381842235272369e+0002,
    377       1.1   ragge    8.098344946564498460163123708054674227492e+0003,
    378       1.1   ragge    1.425382914191204905277585267143216379136e+0005,
    379       1.1   ragge    8.033092571195144136565231198526081387047e+0005,
    380       1.1   ragge    8.405015798190605130722042369969184811488e+0005,
    381       1.1   ragge   -3.438992935378666373204500729736454421006e+0005,
    382       1.1   ragge };
    383       1.1   ragge 
    384  1.4.10.1   lukem static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    385       1.1   ragge    1.840859635945155400568380711372759921179e-0011,
    386       1.1   ragge    7.324217666126847411304688081129741939255e-0002,
    387       1.1   ragge    5.835635089620569401157245917610984757296e+0000,
    388       1.1   ragge    1.351115772864498375785526599119895942361e+0002,
    389       1.1   ragge    1.027243765961641042977177679021711341529e+0003,
    390       1.1   ragge    1.989977858646053872589042328678602481924e+0003,
    391       1.1   ragge };
    392  1.4.10.1   lukem static const double qs5[6] = {
    393       1.1   ragge    8.277661022365377058749454444343415524509e+0001,
    394       1.1   ragge    2.077814164213929827140178285401017305309e+0003,
    395       1.1   ragge    1.884728877857180787101956800212453218179e+0004,
    396       1.1   ragge    5.675111228949473657576693406600265778689e+0004,
    397       1.1   ragge    3.597675384251145011342454247417399490174e+0004,
    398       1.1   ragge   -5.354342756019447546671440667961399442388e+0003,
    399       1.1   ragge };
    400       1.1   ragge 
    401  1.4.10.1   lukem static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    402       1.1   ragge    4.377410140897386263955149197672576223054e-0009,
    403       1.1   ragge    7.324111800429115152536250525131924283018e-0002,
    404       1.1   ragge    3.344231375161707158666412987337679317358e+0000,
    405       1.1   ragge    4.262184407454126175974453269277100206290e+0001,
    406       1.1   ragge    1.708080913405656078640701512007621675724e+0002,
    407       1.1   ragge    1.667339486966511691019925923456050558293e+0002,
    408       1.1   ragge };
    409  1.4.10.1   lukem static const double qs3[6] = {
    410       1.1   ragge    4.875887297245871932865584382810260676713e+0001,
    411       1.1   ragge    7.096892210566060535416958362640184894280e+0002,
    412       1.1   ragge    3.704148226201113687434290319905207398682e+0003,
    413       1.1   ragge    6.460425167525689088321109036469797462086e+0003,
    414       1.1   ragge    2.516333689203689683999196167394889715078e+0003,
    415       1.1   ragge   -1.492474518361563818275130131510339371048e+0002,
    416       1.1   ragge };
    417       1.1   ragge 
    418  1.4.10.1   lukem static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    419       1.1   ragge    1.504444448869832780257436041633206366087e-0007,
    420       1.1   ragge    7.322342659630792930894554535717104926902e-0002,
    421       1.1   ragge    1.998191740938159956838594407540292600331e+0000,
    422       1.1   ragge    1.449560293478857407645853071687125850962e+0001,
    423       1.1   ragge    3.166623175047815297062638132537957315395e+0001,
    424       1.1   ragge    1.625270757109292688799540258329430963726e+0001,
    425       1.1   ragge };
    426  1.4.10.1   lukem static const double qs2[6] = {
    427       1.1   ragge    3.036558483552191922522729838478169383969e+0001,
    428       1.1   ragge    2.693481186080498724211751445725708524507e+0002,
    429       1.1   ragge    8.447837575953201460013136756723746023736e+0002,
    430       1.1   ragge    8.829358451124885811233995083187666981299e+0002,
    431       1.1   ragge    2.126663885117988324180482985363624996652e+0002,
    432       1.1   ragge   -5.310954938826669402431816125780738924463e+0000,
    433       1.1   ragge };
    434       1.1   ragge 
    435  1.4.10.1   lukem static double
    436  1.4.10.1   lukem qzero(double x)
    437       1.1   ragge {
    438  1.4.10.1   lukem 	const double *p,*q;
    439  1.4.10.1   lukem 	double s,r,z;
    440       1.1   ragge 	if (x >= 8.00)			   {p = qr8; q= qs8;}
    441       1.1   ragge 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
    442       1.1   ragge 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
    443       1.2   ragge 	else /* if (x >= 2.00) */	   {p = qr2; q= qs2;}
    444       1.1   ragge 	z = one/(x*x);
    445       1.1   ragge 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    446       1.1   ragge 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    447       1.1   ragge 	return (-.125 + r/s)/x;
    448       1.1   ragge }
    449