n_j0.c revision 1.4.10.1 1 1.4.10.1 lukem /* $NetBSD: n_j0.c,v 1.4.10.1 2002/06/18 13:39:40 lukem Exp $ */
2 1.1 ragge /*-
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)j0.c 8.2 (Berkeley) 11/30/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge /*
42 1.1 ragge * 16 December 1992
43 1.1 ragge * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44 1.1 ragge */
45 1.1 ragge
46 1.1 ragge /*
47 1.1 ragge * ====================================================
48 1.1 ragge * Copyright (C) 1992 by Sun Microsystems, Inc.
49 1.1 ragge *
50 1.1 ragge * Developed at SunPro, a Sun Microsystems, Inc. business.
51 1.1 ragge * Permission to use, copy, modify, and distribute this
52 1.4 simonb * software is freely granted, provided that this notice
53 1.1 ragge * is preserved.
54 1.1 ragge * ====================================================
55 1.1 ragge *
56 1.1 ragge * ******************* WARNING ********************
57 1.1 ragge * This is an alpha version of SunPro's FDLIBM (Freely
58 1.4 simonb * Distributable Math Library) for IEEE double precision
59 1.1 ragge * arithmetic. FDLIBM is a basic math library written
60 1.4 simonb * in C that runs on machines that conform to IEEE
61 1.4 simonb * Standard 754/854. This alpha version is distributed
62 1.4 simonb * for testing purpose. Those who use this software
63 1.4 simonb * should report any bugs to
64 1.1 ragge *
65 1.1 ragge * fdlibm-comments (at) sunpro.eng.sun.com
66 1.1 ragge *
67 1.1 ragge * -- K.C. Ng, Oct 12, 1992
68 1.1 ragge * ************************************************
69 1.1 ragge */
70 1.1 ragge
71 1.1 ragge /* double j0(double x), y0(double x)
72 1.1 ragge * Bessel function of the first and second kinds of order zero.
73 1.1 ragge * Method -- j0(x):
74 1.1 ragge * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
75 1.1 ragge * 2. Reduce x to |x| since j0(x)=j0(-x), and
76 1.1 ragge * for x in (0,2)
77 1.1 ragge * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
78 1.1 ragge * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
79 1.1 ragge * for x in (2,inf)
80 1.1 ragge * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
81 1.1 ragge * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
82 1.1 ragge * as follow:
83 1.1 ragge * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
84 1.1 ragge * = 1/sqrt(2) * (cos(x) + sin(x))
85 1.1 ragge * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
86 1.1 ragge * = 1/sqrt(2) * (sin(x) - cos(x))
87 1.1 ragge * (To avoid cancellation, use
88 1.1 ragge * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
89 1.1 ragge * to compute the worse one.)
90 1.4 simonb *
91 1.1 ragge * 3 Special cases
92 1.1 ragge * j0(nan)= nan
93 1.1 ragge * j0(0) = 1
94 1.1 ragge * j0(inf) = 0
95 1.4 simonb *
96 1.1 ragge * Method -- y0(x):
97 1.1 ragge * 1. For x<2.
98 1.4 simonb * Since
99 1.1 ragge * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
100 1.1 ragge * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
101 1.1 ragge * We use the following function to approximate y0,
102 1.1 ragge * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
103 1.4 simonb * where
104 1.1 ragge * U(z) = u0 + u1*z + ... + u6*z^6
105 1.1 ragge * V(z) = 1 + v1*z + ... + v4*z^4
106 1.1 ragge * with absolute approximation error bounded by 2**-72.
107 1.1 ragge * Note: For tiny x, U/V = u0 and j0(x)~1, hence
108 1.1 ragge * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
109 1.1 ragge * 2. For x>=2.
110 1.1 ragge * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
111 1.1 ragge * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
112 1.1 ragge * by the method mentioned above.
113 1.1 ragge * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
114 1.1 ragge */
115 1.1 ragge
116 1.2 ragge #include "mathimpl.h"
117 1.1 ragge #include <float.h>
118 1.1 ragge #include <errno.h>
119 1.1 ragge
120 1.3 matt #if defined(__vax__) || defined(tahoe)
121 1.1 ragge #define _IEEE 0
122 1.1 ragge #else
123 1.1 ragge #define _IEEE 1
124 1.1 ragge #define infnan(x) (0.0)
125 1.1 ragge #endif
126 1.1 ragge
127 1.4.10.1 lukem static double pzero (double), qzero (double);
128 1.1 ragge
129 1.4.10.1 lukem static const double
130 1.1 ragge huge = 1e300,
131 1.1 ragge zero = 0.0,
132 1.1 ragge one = 1.0,
133 1.1 ragge invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
134 1.1 ragge tpi = 0.636619772367581343075535053490057448,
135 1.1 ragge /* R0/S0 on [0, 2.00] */
136 1.1 ragge r02 = 1.562499999999999408594634421055018003102e-0002,
137 1.1 ragge r03 = -1.899792942388547334476601771991800712355e-0004,
138 1.1 ragge r04 = 1.829540495327006565964161150603950916854e-0006,
139 1.1 ragge r05 = -4.618326885321032060803075217804816988758e-0009,
140 1.1 ragge s01 = 1.561910294648900170180789369288114642057e-0002,
141 1.1 ragge s02 = 1.169267846633374484918570613449245536323e-0004,
142 1.1 ragge s03 = 5.135465502073181376284426245689510134134e-0007,
143 1.1 ragge s04 = 1.166140033337900097836930825478674320464e-0009;
144 1.1 ragge
145 1.1 ragge double
146 1.4.10.1 lukem j0(double x)
147 1.1 ragge {
148 1.1 ragge double z, s,c,ss,cc,r,u,v;
149 1.1 ragge
150 1.3 matt if (!finite(x)) {
151 1.1 ragge if (_IEEE) return one/(x*x);
152 1.1 ragge else return (0);
153 1.3 matt }
154 1.1 ragge x = fabs(x);
155 1.1 ragge if (x >= 2.0) { /* |x| >= 2.0 */
156 1.1 ragge s = sin(x);
157 1.1 ragge c = cos(x);
158 1.1 ragge ss = s-c;
159 1.1 ragge cc = s+c;
160 1.1 ragge if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
161 1.1 ragge z = -cos(x+x);
162 1.1 ragge if ((s*c)<zero) cc = z/ss;
163 1.1 ragge else ss = z/cc;
164 1.1 ragge }
165 1.1 ragge /*
166 1.1 ragge * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
167 1.1 ragge * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
168 1.1 ragge */
169 1.1 ragge if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
170 1.1 ragge z = (invsqrtpi*cc)/sqrt(x);
171 1.1 ragge else {
172 1.1 ragge u = pzero(x); v = qzero(x);
173 1.1 ragge z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
174 1.1 ragge }
175 1.1 ragge return z;
176 1.1 ragge }
177 1.1 ragge if (x < 1.220703125e-004) { /* |x| < 2**-13 */
178 1.1 ragge if (huge+x > one) { /* raise inexact if x != 0 */
179 1.1 ragge if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
180 1.1 ragge return one;
181 1.1 ragge else return (one - 0.25*x*x);
182 1.1 ragge }
183 1.1 ragge }
184 1.1 ragge z = x*x;
185 1.1 ragge r = z*(r02+z*(r03+z*(r04+z*r05)));
186 1.1 ragge s = one+z*(s01+z*(s02+z*(s03+z*s04)));
187 1.1 ragge if (x < one) { /* |x| < 1.00 */
188 1.1 ragge return (one + z*(-0.25+(r/s)));
189 1.1 ragge } else {
190 1.1 ragge u = 0.5*x;
191 1.1 ragge return ((one+u)*(one-u)+z*(r/s));
192 1.1 ragge }
193 1.1 ragge }
194 1.1 ragge
195 1.4.10.1 lukem static const double
196 1.1 ragge u00 = -7.380429510868722527422411862872999615628e-0002,
197 1.1 ragge u01 = 1.766664525091811069896442906220827182707e-0001,
198 1.1 ragge u02 = -1.381856719455968955440002438182885835344e-0002,
199 1.1 ragge u03 = 3.474534320936836562092566861515617053954e-0004,
200 1.1 ragge u04 = -3.814070537243641752631729276103284491172e-0006,
201 1.1 ragge u05 = 1.955901370350229170025509706510038090009e-0008,
202 1.1 ragge u06 = -3.982051941321034108350630097330144576337e-0011,
203 1.1 ragge v01 = 1.273048348341237002944554656529224780561e-0002,
204 1.1 ragge v02 = 7.600686273503532807462101309675806839635e-0005,
205 1.1 ragge v03 = 2.591508518404578033173189144579208685163e-0007,
206 1.1 ragge v04 = 4.411103113326754838596529339004302243157e-0010;
207 1.1 ragge
208 1.1 ragge double
209 1.4.10.1 lukem y0(double x)
210 1.1 ragge {
211 1.1 ragge double z, s, c, ss, cc, u, v;
212 1.1 ragge /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
213 1.3 matt if (!finite(x)) {
214 1.1 ragge if (_IEEE)
215 1.1 ragge return (one/(x+x*x));
216 1.1 ragge else
217 1.1 ragge return (0);
218 1.3 matt }
219 1.3 matt if (x == 0) {
220 1.1 ragge if (_IEEE) return (-one/zero);
221 1.1 ragge else return(infnan(-ERANGE));
222 1.3 matt }
223 1.3 matt if (x<0) {
224 1.1 ragge if (_IEEE) return (zero/zero);
225 1.1 ragge else return (infnan(EDOM));
226 1.3 matt }
227 1.1 ragge if (x >= 2.00) { /* |x| >= 2.0 */
228 1.1 ragge /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
229 1.1 ragge * where x0 = x-pi/4
230 1.1 ragge * Better formula:
231 1.1 ragge * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
232 1.1 ragge * = 1/sqrt(2) * (sin(x) + cos(x))
233 1.1 ragge * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
234 1.1 ragge * = 1/sqrt(2) * (sin(x) - cos(x))
235 1.1 ragge * To avoid cancellation, use
236 1.1 ragge * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
237 1.1 ragge * to compute the worse one.
238 1.1 ragge */
239 1.1 ragge s = sin(x);
240 1.1 ragge c = cos(x);
241 1.1 ragge ss = s-c;
242 1.1 ragge cc = s+c;
243 1.1 ragge /*
244 1.1 ragge * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
245 1.1 ragge * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
246 1.1 ragge */
247 1.1 ragge if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
248 1.1 ragge z = -cos(x+x);
249 1.1 ragge if ((s*c)<zero) cc = z/ss;
250 1.1 ragge else ss = z/cc;
251 1.1 ragge }
252 1.1 ragge if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
253 1.1 ragge z = (invsqrtpi*ss)/sqrt(x);
254 1.1 ragge else {
255 1.1 ragge u = pzero(x); v = qzero(x);
256 1.1 ragge z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
257 1.1 ragge }
258 1.1 ragge return z;
259 1.1 ragge }
260 1.1 ragge if (x <= 7.450580596923828125e-009) { /* x < 2**-27 */
261 1.1 ragge return (u00 + tpi*log(x));
262 1.1 ragge }
263 1.1 ragge z = x*x;
264 1.1 ragge u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
265 1.1 ragge v = one+z*(v01+z*(v02+z*(v03+z*v04)));
266 1.1 ragge return (u/v + tpi*(j0(x)*log(x)));
267 1.1 ragge }
268 1.1 ragge
269 1.1 ragge /* The asymptotic expansions of pzero is
270 1.1 ragge * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
271 1.1 ragge * For x >= 2, We approximate pzero by
272 1.1 ragge * pzero(x) = 1 + (R/S)
273 1.1 ragge * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
274 1.1 ragge * S = 1 + ps0*s^2 + ... + ps4*s^10
275 1.1 ragge * and
276 1.1 ragge * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
277 1.1 ragge */
278 1.4.10.1 lukem static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
279 1.1 ragge 0.0,
280 1.1 ragge -7.031249999999003994151563066182798210142e-0002,
281 1.1 ragge -8.081670412753498508883963849859423939871e+0000,
282 1.1 ragge -2.570631056797048755890526455854482662510e+0002,
283 1.1 ragge -2.485216410094288379417154382189125598962e+0003,
284 1.1 ragge -5.253043804907295692946647153614119665649e+0003,
285 1.1 ragge };
286 1.4.10.1 lukem static const double ps8[5] = {
287 1.1 ragge 1.165343646196681758075176077627332052048e+0002,
288 1.1 ragge 3.833744753641218451213253490882686307027e+0003,
289 1.1 ragge 4.059785726484725470626341023967186966531e+0004,
290 1.1 ragge 1.167529725643759169416844015694440325519e+0005,
291 1.1 ragge 4.762772841467309430100106254805711722972e+0004,
292 1.1 ragge };
293 1.1 ragge
294 1.4.10.1 lukem static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
295 1.1 ragge -1.141254646918944974922813501362824060117e-0011,
296 1.1 ragge -7.031249408735992804117367183001996028304e-0002,
297 1.1 ragge -4.159610644705877925119684455252125760478e+0000,
298 1.1 ragge -6.767476522651671942610538094335912346253e+0001,
299 1.1 ragge -3.312312996491729755731871867397057689078e+0002,
300 1.1 ragge -3.464333883656048910814187305901796723256e+0002,
301 1.1 ragge };
302 1.4.10.1 lukem static const double ps5[5] = {
303 1.1 ragge 6.075393826923003305967637195319271932944e+0001,
304 1.1 ragge 1.051252305957045869801410979087427910437e+0003,
305 1.1 ragge 5.978970943338558182743915287887408780344e+0003,
306 1.1 ragge 9.625445143577745335793221135208591603029e+0003,
307 1.1 ragge 2.406058159229391070820491174867406875471e+0003,
308 1.1 ragge };
309 1.1 ragge
310 1.4.10.1 lukem static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
311 1.1 ragge -2.547046017719519317420607587742992297519e-0009,
312 1.1 ragge -7.031196163814817199050629727406231152464e-0002,
313 1.1 ragge -2.409032215495295917537157371488126555072e+0000,
314 1.1 ragge -2.196597747348830936268718293366935843223e+0001,
315 1.1 ragge -5.807917047017375458527187341817239891940e+0001,
316 1.1 ragge -3.144794705948885090518775074177485744176e+0001,
317 1.1 ragge };
318 1.4.10.1 lukem static const double ps3[5] = {
319 1.1 ragge 3.585603380552097167919946472266854507059e+0001,
320 1.1 ragge 3.615139830503038919981567245265266294189e+0002,
321 1.1 ragge 1.193607837921115243628631691509851364715e+0003,
322 1.1 ragge 1.127996798569074250675414186814529958010e+0003,
323 1.1 ragge 1.735809308133357510239737333055228118910e+0002,
324 1.1 ragge };
325 1.1 ragge
326 1.4.10.1 lukem static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
327 1.1 ragge -8.875343330325263874525704514800809730145e-0008,
328 1.1 ragge -7.030309954836247756556445443331044338352e-0002,
329 1.1 ragge -1.450738467809529910662233622603401167409e+0000,
330 1.1 ragge -7.635696138235277739186371273434739292491e+0000,
331 1.1 ragge -1.119316688603567398846655082201614524650e+0001,
332 1.1 ragge -3.233645793513353260006821113608134669030e+0000,
333 1.1 ragge };
334 1.4.10.1 lukem static const double ps2[5] = {
335 1.1 ragge 2.222029975320888079364901247548798910952e+0001,
336 1.1 ragge 1.362067942182152109590340823043813120940e+0002,
337 1.1 ragge 2.704702786580835044524562897256790293238e+0002,
338 1.1 ragge 1.538753942083203315263554770476850028583e+0002,
339 1.1 ragge 1.465761769482561965099880599279699314477e+0001,
340 1.1 ragge };
341 1.1 ragge
342 1.4.10.1 lukem static double
343 1.4.10.1 lukem pzero(double x)
344 1.1 ragge {
345 1.4.10.1 lukem const double *p,*q;
346 1.4.10.1 lukem double z,r,s;
347 1.1 ragge if (x >= 8.00) {p = pr8; q= ps8;}
348 1.1 ragge else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
349 1.1 ragge else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
350 1.2 ragge else /* if (x >= 2.00) */ {p = pr2; q= ps2;}
351 1.1 ragge z = one/(x*x);
352 1.1 ragge r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
353 1.1 ragge s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
354 1.1 ragge return one+ r/s;
355 1.1 ragge }
356 1.4 simonb
357 1.1 ragge
358 1.1 ragge /* For x >= 8, the asymptotic expansions of qzero is
359 1.1 ragge * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
360 1.1 ragge * We approximate pzero by
361 1.1 ragge * qzero(x) = s*(-1.25 + (R/S))
362 1.1 ragge * where R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
363 1.1 ragge * S = 1 + qs0*s^2 + ... + qs5*s^12
364 1.1 ragge * and
365 1.1 ragge * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
366 1.1 ragge */
367 1.4.10.1 lukem static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
368 1.1 ragge 0.0,
369 1.1 ragge 7.324218749999350414479738504551775297096e-0002,
370 1.1 ragge 1.176820646822526933903301695932765232456e+0001,
371 1.1 ragge 5.576733802564018422407734683549251364365e+0002,
372 1.1 ragge 8.859197207564685717547076568608235802317e+0003,
373 1.1 ragge 3.701462677768878501173055581933725704809e+0004,
374 1.1 ragge };
375 1.4.10.1 lukem static const double qs8[6] = {
376 1.1 ragge 1.637760268956898345680262381842235272369e+0002,
377 1.1 ragge 8.098344946564498460163123708054674227492e+0003,
378 1.1 ragge 1.425382914191204905277585267143216379136e+0005,
379 1.1 ragge 8.033092571195144136565231198526081387047e+0005,
380 1.1 ragge 8.405015798190605130722042369969184811488e+0005,
381 1.1 ragge -3.438992935378666373204500729736454421006e+0005,
382 1.1 ragge };
383 1.1 ragge
384 1.4.10.1 lukem static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
385 1.1 ragge 1.840859635945155400568380711372759921179e-0011,
386 1.1 ragge 7.324217666126847411304688081129741939255e-0002,
387 1.1 ragge 5.835635089620569401157245917610984757296e+0000,
388 1.1 ragge 1.351115772864498375785526599119895942361e+0002,
389 1.1 ragge 1.027243765961641042977177679021711341529e+0003,
390 1.1 ragge 1.989977858646053872589042328678602481924e+0003,
391 1.1 ragge };
392 1.4.10.1 lukem static const double qs5[6] = {
393 1.1 ragge 8.277661022365377058749454444343415524509e+0001,
394 1.1 ragge 2.077814164213929827140178285401017305309e+0003,
395 1.1 ragge 1.884728877857180787101956800212453218179e+0004,
396 1.1 ragge 5.675111228949473657576693406600265778689e+0004,
397 1.1 ragge 3.597675384251145011342454247417399490174e+0004,
398 1.1 ragge -5.354342756019447546671440667961399442388e+0003,
399 1.1 ragge };
400 1.1 ragge
401 1.4.10.1 lukem static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
402 1.1 ragge 4.377410140897386263955149197672576223054e-0009,
403 1.1 ragge 7.324111800429115152536250525131924283018e-0002,
404 1.1 ragge 3.344231375161707158666412987337679317358e+0000,
405 1.1 ragge 4.262184407454126175974453269277100206290e+0001,
406 1.1 ragge 1.708080913405656078640701512007621675724e+0002,
407 1.1 ragge 1.667339486966511691019925923456050558293e+0002,
408 1.1 ragge };
409 1.4.10.1 lukem static const double qs3[6] = {
410 1.1 ragge 4.875887297245871932865584382810260676713e+0001,
411 1.1 ragge 7.096892210566060535416958362640184894280e+0002,
412 1.1 ragge 3.704148226201113687434290319905207398682e+0003,
413 1.1 ragge 6.460425167525689088321109036469797462086e+0003,
414 1.1 ragge 2.516333689203689683999196167394889715078e+0003,
415 1.1 ragge -1.492474518361563818275130131510339371048e+0002,
416 1.1 ragge };
417 1.1 ragge
418 1.4.10.1 lukem static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
419 1.1 ragge 1.504444448869832780257436041633206366087e-0007,
420 1.1 ragge 7.322342659630792930894554535717104926902e-0002,
421 1.1 ragge 1.998191740938159956838594407540292600331e+0000,
422 1.1 ragge 1.449560293478857407645853071687125850962e+0001,
423 1.1 ragge 3.166623175047815297062638132537957315395e+0001,
424 1.1 ragge 1.625270757109292688799540258329430963726e+0001,
425 1.1 ragge };
426 1.4.10.1 lukem static const double qs2[6] = {
427 1.1 ragge 3.036558483552191922522729838478169383969e+0001,
428 1.1 ragge 2.693481186080498724211751445725708524507e+0002,
429 1.1 ragge 8.447837575953201460013136756723746023736e+0002,
430 1.1 ragge 8.829358451124885811233995083187666981299e+0002,
431 1.1 ragge 2.126663885117988324180482985363624996652e+0002,
432 1.1 ragge -5.310954938826669402431816125780738924463e+0000,
433 1.1 ragge };
434 1.1 ragge
435 1.4.10.1 lukem static double
436 1.4.10.1 lukem qzero(double x)
437 1.1 ragge {
438 1.4.10.1 lukem const double *p,*q;
439 1.4.10.1 lukem double s,r,z;
440 1.1 ragge if (x >= 8.00) {p = qr8; q= qs8;}
441 1.1 ragge else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
442 1.1 ragge else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
443 1.2 ragge else /* if (x >= 2.00) */ {p = qr2; q= qs2;}
444 1.1 ragge z = one/(x*x);
445 1.1 ragge r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
446 1.1 ragge s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
447 1.1 ragge return (-.125 + r/s)/x;
448 1.1 ragge }
449