Home | History | Annotate | Line # | Download | only in noieee_src
n_j0.c revision 1.5
      1  1.5    matt /*	$NetBSD: n_j0.c,v 1.5 2002/06/15 00:10:17 matt Exp $	*/
      2  1.1   ragge /*-
      3  1.1   ragge  * Copyright (c) 1992, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1   ragge  *    must display the following acknowledgement:
     16  1.1   ragge  *	This product includes software developed by the University of
     17  1.1   ragge  *	California, Berkeley and its contributors.
     18  1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1   ragge  *    may be used to endorse or promote products derived from this software
     20  1.1   ragge  *    without specific prior written permission.
     21  1.1   ragge  *
     22  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1   ragge  * SUCH DAMAGE.
     33  1.1   ragge  */
     34  1.1   ragge 
     35  1.1   ragge #ifndef lint
     36  1.2   ragge #if 0
     37  1.1   ragge static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
     38  1.2   ragge #endif
     39  1.1   ragge #endif /* not lint */
     40  1.1   ragge 
     41  1.1   ragge /*
     42  1.1   ragge  * 16 December 1992
     43  1.1   ragge  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     44  1.1   ragge  */
     45  1.1   ragge 
     46  1.1   ragge /*
     47  1.1   ragge  * ====================================================
     48  1.1   ragge  * Copyright (C) 1992 by Sun Microsystems, Inc.
     49  1.1   ragge  *
     50  1.1   ragge  * Developed at SunPro, a Sun Microsystems, Inc. business.
     51  1.1   ragge  * Permission to use, copy, modify, and distribute this
     52  1.4  simonb  * software is freely granted, provided that this notice
     53  1.1   ragge  * is preserved.
     54  1.1   ragge  * ====================================================
     55  1.1   ragge  *
     56  1.1   ragge  * ******************* WARNING ********************
     57  1.1   ragge  * This is an alpha version of SunPro's FDLIBM (Freely
     58  1.4  simonb  * Distributable Math Library) for IEEE double precision
     59  1.1   ragge  * arithmetic. FDLIBM is a basic math library written
     60  1.4  simonb  * in C that runs on machines that conform to IEEE
     61  1.4  simonb  * Standard 754/854. This alpha version is distributed
     62  1.4  simonb  * for testing purpose. Those who use this software
     63  1.4  simonb  * should report any bugs to
     64  1.1   ragge  *
     65  1.1   ragge  *		fdlibm-comments (at) sunpro.eng.sun.com
     66  1.1   ragge  *
     67  1.1   ragge  * -- K.C. Ng, Oct 12, 1992
     68  1.1   ragge  * ************************************************
     69  1.1   ragge  */
     70  1.1   ragge 
     71  1.1   ragge /* double j0(double x), y0(double x)
     72  1.1   ragge  * Bessel function of the first and second kinds of order zero.
     73  1.1   ragge  * Method -- j0(x):
     74  1.1   ragge  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
     75  1.1   ragge  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
     76  1.1   ragge  *	   for x in (0,2)
     77  1.1   ragge  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
     78  1.1   ragge  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
     79  1.1   ragge  *	   for x in (2,inf)
     80  1.1   ragge  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
     81  1.1   ragge  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
     82  1.1   ragge  *	   as follow:
     83  1.1   ragge  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
     84  1.1   ragge  *			= 1/sqrt(2) * (cos(x) + sin(x))
     85  1.1   ragge  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
     86  1.1   ragge  *			= 1/sqrt(2) * (sin(x) - cos(x))
     87  1.1   ragge  * 	   (To avoid cancellation, use
     88  1.1   ragge  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     89  1.1   ragge  * 	    to compute the worse one.)
     90  1.4  simonb  *
     91  1.1   ragge  *	3 Special cases
     92  1.1   ragge  *		j0(nan)= nan
     93  1.1   ragge  *		j0(0) = 1
     94  1.1   ragge  *		j0(inf) = 0
     95  1.4  simonb  *
     96  1.1   ragge  * Method -- y0(x):
     97  1.1   ragge  *	1. For x<2.
     98  1.4  simonb  *	   Since
     99  1.1   ragge  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
    100  1.1   ragge  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
    101  1.1   ragge  *	   We use the following function to approximate y0,
    102  1.1   ragge  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
    103  1.4  simonb  *	   where
    104  1.1   ragge  *		U(z) = u0 + u1*z + ... + u6*z^6
    105  1.1   ragge  *		V(z) = 1  + v1*z + ... + v4*z^4
    106  1.1   ragge  *	   with absolute approximation error bounded by 2**-72.
    107  1.1   ragge  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
    108  1.1   ragge  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
    109  1.1   ragge  *	2. For x>=2.
    110  1.1   ragge  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
    111  1.1   ragge  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
    112  1.1   ragge  *	   by the method mentioned above.
    113  1.1   ragge  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
    114  1.1   ragge  */
    115  1.1   ragge 
    116  1.2   ragge #include "mathimpl.h"
    117  1.1   ragge #include <float.h>
    118  1.1   ragge #include <errno.h>
    119  1.1   ragge 
    120  1.3    matt #if defined(__vax__) || defined(tahoe)
    121  1.1   ragge #define _IEEE	0
    122  1.1   ragge #else
    123  1.1   ragge #define _IEEE	1
    124  1.1   ragge #define infnan(x) (0.0)
    125  1.1   ragge #endif
    126  1.1   ragge 
    127  1.5    matt static double pzero (double), qzero (double);
    128  1.1   ragge 
    129  1.5    matt static const double
    130  1.1   ragge huge 	= 1e300,
    131  1.1   ragge zero    = 0.0,
    132  1.1   ragge one	= 1.0,
    133  1.1   ragge invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    134  1.1   ragge tpi	= 0.636619772367581343075535053490057448,
    135  1.1   ragge  		/* R0/S0 on [0, 2.00] */
    136  1.1   ragge r02 =   1.562499999999999408594634421055018003102e-0002,
    137  1.1   ragge r03 =  -1.899792942388547334476601771991800712355e-0004,
    138  1.1   ragge r04 =   1.829540495327006565964161150603950916854e-0006,
    139  1.1   ragge r05 =  -4.618326885321032060803075217804816988758e-0009,
    140  1.1   ragge s01 =   1.561910294648900170180789369288114642057e-0002,
    141  1.1   ragge s02 =   1.169267846633374484918570613449245536323e-0004,
    142  1.1   ragge s03 =   5.135465502073181376284426245689510134134e-0007,
    143  1.1   ragge s04 =   1.166140033337900097836930825478674320464e-0009;
    144  1.1   ragge 
    145  1.1   ragge double
    146  1.5    matt j0(double x)
    147  1.1   ragge {
    148  1.1   ragge 	double z, s,c,ss,cc,r,u,v;
    149  1.1   ragge 
    150  1.3    matt 	if (!finite(x)) {
    151  1.1   ragge 		if (_IEEE) return one/(x*x);
    152  1.1   ragge 		else return (0);
    153  1.3    matt 	}
    154  1.1   ragge 	x = fabs(x);
    155  1.1   ragge 	if (x >= 2.0) {	/* |x| >= 2.0 */
    156  1.1   ragge 		s = sin(x);
    157  1.1   ragge 		c = cos(x);
    158  1.1   ragge 		ss = s-c;
    159  1.1   ragge 		cc = s+c;
    160  1.1   ragge 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    161  1.1   ragge 		    z = -cos(x+x);
    162  1.1   ragge 		    if ((s*c)<zero) cc = z/ss;
    163  1.1   ragge 		    else 	    ss = z/cc;
    164  1.1   ragge 		}
    165  1.1   ragge 	/*
    166  1.1   ragge 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    167  1.1   ragge 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    168  1.1   ragge 	 */
    169  1.1   ragge 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
    170  1.1   ragge 			z = (invsqrtpi*cc)/sqrt(x);
    171  1.1   ragge 		else {
    172  1.1   ragge 		    u = pzero(x); v = qzero(x);
    173  1.1   ragge 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
    174  1.1   ragge 		}
    175  1.1   ragge 		return z;
    176  1.1   ragge 	}
    177  1.1   ragge 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
    178  1.1   ragge 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
    179  1.1   ragge 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
    180  1.1   ragge 			return one;
    181  1.1   ragge 	        else return (one - 0.25*x*x);
    182  1.1   ragge 	    }
    183  1.1   ragge 	}
    184  1.1   ragge 	z = x*x;
    185  1.1   ragge 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
    186  1.1   ragge 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
    187  1.1   ragge 	if (x < one) {			/* |x| < 1.00 */
    188  1.1   ragge 	    return (one + z*(-0.25+(r/s)));
    189  1.1   ragge 	} else {
    190  1.1   ragge 	    u = 0.5*x;
    191  1.1   ragge 	    return ((one+u)*(one-u)+z*(r/s));
    192  1.1   ragge 	}
    193  1.1   ragge }
    194  1.1   ragge 
    195  1.5    matt static const double
    196  1.1   ragge u00 =  -7.380429510868722527422411862872999615628e-0002,
    197  1.1   ragge u01 =   1.766664525091811069896442906220827182707e-0001,
    198  1.1   ragge u02 =  -1.381856719455968955440002438182885835344e-0002,
    199  1.1   ragge u03 =   3.474534320936836562092566861515617053954e-0004,
    200  1.1   ragge u04 =  -3.814070537243641752631729276103284491172e-0006,
    201  1.1   ragge u05 =   1.955901370350229170025509706510038090009e-0008,
    202  1.1   ragge u06 =  -3.982051941321034108350630097330144576337e-0011,
    203  1.1   ragge v01 =   1.273048348341237002944554656529224780561e-0002,
    204  1.1   ragge v02 =   7.600686273503532807462101309675806839635e-0005,
    205  1.1   ragge v03 =   2.591508518404578033173189144579208685163e-0007,
    206  1.1   ragge v04 =   4.411103113326754838596529339004302243157e-0010;
    207  1.1   ragge 
    208  1.1   ragge double
    209  1.5    matt y0(double x)
    210  1.1   ragge {
    211  1.1   ragge 	double z, s, c, ss, cc, u, v;
    212  1.1   ragge     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
    213  1.3    matt 	if (!finite(x)) {
    214  1.1   ragge 		if (_IEEE)
    215  1.1   ragge 			return (one/(x+x*x));
    216  1.1   ragge 		else
    217  1.1   ragge 			return (0);
    218  1.3    matt 	}
    219  1.3    matt         if (x == 0) {
    220  1.1   ragge 		if (_IEEE)	return (-one/zero);
    221  1.1   ragge 		else		return(infnan(-ERANGE));
    222  1.3    matt 	}
    223  1.3    matt         if (x<0) {
    224  1.1   ragge 		if (_IEEE)	return (zero/zero);
    225  1.1   ragge 		else		return (infnan(EDOM));
    226  1.3    matt 	}
    227  1.1   ragge         if (x >= 2.00) {	/* |x| >= 2.0 */
    228  1.1   ragge         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
    229  1.1   ragge          * where x0 = x-pi/4
    230  1.1   ragge          *      Better formula:
    231  1.1   ragge          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    232  1.1   ragge          *                      =  1/sqrt(2) * (sin(x) + cos(x))
    233  1.1   ragge          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    234  1.1   ragge          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    235  1.1   ragge          * To avoid cancellation, use
    236  1.1   ragge          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    237  1.1   ragge          * to compute the worse one.
    238  1.1   ragge          */
    239  1.1   ragge                 s = sin(x);
    240  1.1   ragge                 c = cos(x);
    241  1.1   ragge                 ss = s-c;
    242  1.1   ragge                 cc = s+c;
    243  1.1   ragge 	/*
    244  1.1   ragge 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    245  1.1   ragge 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    246  1.1   ragge 	 */
    247  1.1   ragge                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    248  1.1   ragge                     z = -cos(x+x);
    249  1.1   ragge                     if ((s*c)<zero) cc = z/ss;
    250  1.1   ragge                     else            ss = z/cc;
    251  1.1   ragge                 }
    252  1.1   ragge                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
    253  1.1   ragge 			z = (invsqrtpi*ss)/sqrt(x);
    254  1.1   ragge                 else {
    255  1.1   ragge                     u = pzero(x); v = qzero(x);
    256  1.1   ragge                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    257  1.1   ragge                 }
    258  1.1   ragge                 return z;
    259  1.1   ragge 	}
    260  1.1   ragge 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
    261  1.1   ragge 	    return (u00 + tpi*log(x));
    262  1.1   ragge 	}
    263  1.1   ragge 	z = x*x;
    264  1.1   ragge 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
    265  1.1   ragge 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
    266  1.1   ragge 	return (u/v + tpi*(j0(x)*log(x)));
    267  1.1   ragge }
    268  1.1   ragge 
    269  1.1   ragge /* The asymptotic expansions of pzero is
    270  1.1   ragge  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
    271  1.1   ragge  * For x >= 2, We approximate pzero by
    272  1.1   ragge  * 	pzero(x) = 1 + (R/S)
    273  1.1   ragge  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    274  1.1   ragge  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    275  1.1   ragge  * and
    276  1.1   ragge  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
    277  1.1   ragge  */
    278  1.5    matt static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    279  1.1   ragge    0.0,
    280  1.1   ragge   -7.031249999999003994151563066182798210142e-0002,
    281  1.1   ragge   -8.081670412753498508883963849859423939871e+0000,
    282  1.1   ragge   -2.570631056797048755890526455854482662510e+0002,
    283  1.1   ragge   -2.485216410094288379417154382189125598962e+0003,
    284  1.1   ragge   -5.253043804907295692946647153614119665649e+0003,
    285  1.1   ragge };
    286  1.5    matt static const double ps8[5] = {
    287  1.1   ragge    1.165343646196681758075176077627332052048e+0002,
    288  1.1   ragge    3.833744753641218451213253490882686307027e+0003,
    289  1.1   ragge    4.059785726484725470626341023967186966531e+0004,
    290  1.1   ragge    1.167529725643759169416844015694440325519e+0005,
    291  1.1   ragge    4.762772841467309430100106254805711722972e+0004,
    292  1.1   ragge };
    293  1.1   ragge 
    294  1.5    matt static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    295  1.1   ragge   -1.141254646918944974922813501362824060117e-0011,
    296  1.1   ragge   -7.031249408735992804117367183001996028304e-0002,
    297  1.1   ragge   -4.159610644705877925119684455252125760478e+0000,
    298  1.1   ragge   -6.767476522651671942610538094335912346253e+0001,
    299  1.1   ragge   -3.312312996491729755731871867397057689078e+0002,
    300  1.1   ragge   -3.464333883656048910814187305901796723256e+0002,
    301  1.1   ragge };
    302  1.5    matt static const double ps5[5] = {
    303  1.1   ragge    6.075393826923003305967637195319271932944e+0001,
    304  1.1   ragge    1.051252305957045869801410979087427910437e+0003,
    305  1.1   ragge    5.978970943338558182743915287887408780344e+0003,
    306  1.1   ragge    9.625445143577745335793221135208591603029e+0003,
    307  1.1   ragge    2.406058159229391070820491174867406875471e+0003,
    308  1.1   ragge };
    309  1.1   ragge 
    310  1.5    matt static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    311  1.1   ragge   -2.547046017719519317420607587742992297519e-0009,
    312  1.1   ragge   -7.031196163814817199050629727406231152464e-0002,
    313  1.1   ragge   -2.409032215495295917537157371488126555072e+0000,
    314  1.1   ragge   -2.196597747348830936268718293366935843223e+0001,
    315  1.1   ragge   -5.807917047017375458527187341817239891940e+0001,
    316  1.1   ragge   -3.144794705948885090518775074177485744176e+0001,
    317  1.1   ragge };
    318  1.5    matt static const double ps3[5] = {
    319  1.1   ragge    3.585603380552097167919946472266854507059e+0001,
    320  1.1   ragge    3.615139830503038919981567245265266294189e+0002,
    321  1.1   ragge    1.193607837921115243628631691509851364715e+0003,
    322  1.1   ragge    1.127996798569074250675414186814529958010e+0003,
    323  1.1   ragge    1.735809308133357510239737333055228118910e+0002,
    324  1.1   ragge };
    325  1.1   ragge 
    326  1.5    matt static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    327  1.1   ragge   -8.875343330325263874525704514800809730145e-0008,
    328  1.1   ragge   -7.030309954836247756556445443331044338352e-0002,
    329  1.1   ragge   -1.450738467809529910662233622603401167409e+0000,
    330  1.1   ragge   -7.635696138235277739186371273434739292491e+0000,
    331  1.1   ragge   -1.119316688603567398846655082201614524650e+0001,
    332  1.1   ragge   -3.233645793513353260006821113608134669030e+0000,
    333  1.1   ragge };
    334  1.5    matt static const double ps2[5] = {
    335  1.1   ragge    2.222029975320888079364901247548798910952e+0001,
    336  1.1   ragge    1.362067942182152109590340823043813120940e+0002,
    337  1.1   ragge    2.704702786580835044524562897256790293238e+0002,
    338  1.1   ragge    1.538753942083203315263554770476850028583e+0002,
    339  1.1   ragge    1.465761769482561965099880599279699314477e+0001,
    340  1.1   ragge };
    341  1.1   ragge 
    342  1.5    matt static double
    343  1.5    matt pzero(double x)
    344  1.1   ragge {
    345  1.5    matt 	const double *p,*q;
    346  1.5    matt 	double z,r,s;
    347  1.1   ragge 	if (x >= 8.00)			   {p = pr8; q= ps8;}
    348  1.1   ragge 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
    349  1.1   ragge 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
    350  1.2   ragge 	else /* if (x >= 2.00) */	   {p = pr2; q= ps2;}
    351  1.1   ragge 	z = one/(x*x);
    352  1.1   ragge 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    353  1.1   ragge 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    354  1.1   ragge 	return one+ r/s;
    355  1.1   ragge }
    356  1.4  simonb 
    357  1.1   ragge 
    358  1.1   ragge /* For x >= 8, the asymptotic expansions of qzero is
    359  1.1   ragge  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
    360  1.1   ragge  * We approximate pzero by
    361  1.1   ragge  * 	qzero(x) = s*(-1.25 + (R/S))
    362  1.1   ragge  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    363  1.1   ragge  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
    364  1.1   ragge  * and
    365  1.1   ragge  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
    366  1.1   ragge  */
    367  1.5    matt static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    368  1.1   ragge    0.0,
    369  1.1   ragge    7.324218749999350414479738504551775297096e-0002,
    370  1.1   ragge    1.176820646822526933903301695932765232456e+0001,
    371  1.1   ragge    5.576733802564018422407734683549251364365e+0002,
    372  1.1   ragge    8.859197207564685717547076568608235802317e+0003,
    373  1.1   ragge    3.701462677768878501173055581933725704809e+0004,
    374  1.1   ragge };
    375  1.5    matt static const double qs8[6] = {
    376  1.1   ragge    1.637760268956898345680262381842235272369e+0002,
    377  1.1   ragge    8.098344946564498460163123708054674227492e+0003,
    378  1.1   ragge    1.425382914191204905277585267143216379136e+0005,
    379  1.1   ragge    8.033092571195144136565231198526081387047e+0005,
    380  1.1   ragge    8.405015798190605130722042369969184811488e+0005,
    381  1.1   ragge   -3.438992935378666373204500729736454421006e+0005,
    382  1.1   ragge };
    383  1.1   ragge 
    384  1.5    matt static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    385  1.1   ragge    1.840859635945155400568380711372759921179e-0011,
    386  1.1   ragge    7.324217666126847411304688081129741939255e-0002,
    387  1.1   ragge    5.835635089620569401157245917610984757296e+0000,
    388  1.1   ragge    1.351115772864498375785526599119895942361e+0002,
    389  1.1   ragge    1.027243765961641042977177679021711341529e+0003,
    390  1.1   ragge    1.989977858646053872589042328678602481924e+0003,
    391  1.1   ragge };
    392  1.5    matt static const double qs5[6] = {
    393  1.1   ragge    8.277661022365377058749454444343415524509e+0001,
    394  1.1   ragge    2.077814164213929827140178285401017305309e+0003,
    395  1.1   ragge    1.884728877857180787101956800212453218179e+0004,
    396  1.1   ragge    5.675111228949473657576693406600265778689e+0004,
    397  1.1   ragge    3.597675384251145011342454247417399490174e+0004,
    398  1.1   ragge   -5.354342756019447546671440667961399442388e+0003,
    399  1.1   ragge };
    400  1.1   ragge 
    401  1.5    matt static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    402  1.1   ragge    4.377410140897386263955149197672576223054e-0009,
    403  1.1   ragge    7.324111800429115152536250525131924283018e-0002,
    404  1.1   ragge    3.344231375161707158666412987337679317358e+0000,
    405  1.1   ragge    4.262184407454126175974453269277100206290e+0001,
    406  1.1   ragge    1.708080913405656078640701512007621675724e+0002,
    407  1.1   ragge    1.667339486966511691019925923456050558293e+0002,
    408  1.1   ragge };
    409  1.5    matt static const double qs3[6] = {
    410  1.1   ragge    4.875887297245871932865584382810260676713e+0001,
    411  1.1   ragge    7.096892210566060535416958362640184894280e+0002,
    412  1.1   ragge    3.704148226201113687434290319905207398682e+0003,
    413  1.1   ragge    6.460425167525689088321109036469797462086e+0003,
    414  1.1   ragge    2.516333689203689683999196167394889715078e+0003,
    415  1.1   ragge   -1.492474518361563818275130131510339371048e+0002,
    416  1.1   ragge };
    417  1.1   ragge 
    418  1.5    matt static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    419  1.1   ragge    1.504444448869832780257436041633206366087e-0007,
    420  1.1   ragge    7.322342659630792930894554535717104926902e-0002,
    421  1.1   ragge    1.998191740938159956838594407540292600331e+0000,
    422  1.1   ragge    1.449560293478857407645853071687125850962e+0001,
    423  1.1   ragge    3.166623175047815297062638132537957315395e+0001,
    424  1.1   ragge    1.625270757109292688799540258329430963726e+0001,
    425  1.1   ragge };
    426  1.5    matt static const double qs2[6] = {
    427  1.1   ragge    3.036558483552191922522729838478169383969e+0001,
    428  1.1   ragge    2.693481186080498724211751445725708524507e+0002,
    429  1.1   ragge    8.447837575953201460013136756723746023736e+0002,
    430  1.1   ragge    8.829358451124885811233995083187666981299e+0002,
    431  1.1   ragge    2.126663885117988324180482985363624996652e+0002,
    432  1.1   ragge   -5.310954938826669402431816125780738924463e+0000,
    433  1.1   ragge };
    434  1.1   ragge 
    435  1.5    matt static double
    436  1.5    matt qzero(double x)
    437  1.1   ragge {
    438  1.5    matt 	const double *p,*q;
    439  1.5    matt 	double s,r,z;
    440  1.1   ragge 	if (x >= 8.00)			   {p = qr8; q= qs8;}
    441  1.1   ragge 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
    442  1.1   ragge 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
    443  1.2   ragge 	else /* if (x >= 2.00) */	   {p = qr2; q= qs2;}
    444  1.1   ragge 	z = one/(x*x);
    445  1.1   ragge 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    446  1.1   ragge 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    447  1.1   ragge 	return (-.125 + r/s)/x;
    448  1.1   ragge }
    449