Home | History | Annotate | Line # | Download | only in noieee_src
n_j0.c revision 1.1
      1 /*	$NetBSD: n_j0.c,v 1.1 1995/10/10 23:36:52 ragge Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
     37 #endif /* not lint */
     38 
     39 /*
     40  * 16 December 1992
     41  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     42  */
     43 
     44 /*
     45  * ====================================================
     46  * Copyright (C) 1992 by Sun Microsystems, Inc.
     47  *
     48  * Developed at SunPro, a Sun Microsystems, Inc. business.
     49  * Permission to use, copy, modify, and distribute this
     50  * software is freely granted, provided that this notice
     51  * is preserved.
     52  * ====================================================
     53  *
     54  * ******************* WARNING ********************
     55  * This is an alpha version of SunPro's FDLIBM (Freely
     56  * Distributable Math Library) for IEEE double precision
     57  * arithmetic. FDLIBM is a basic math library written
     58  * in C that runs on machines that conform to IEEE
     59  * Standard 754/854. This alpha version is distributed
     60  * for testing purpose. Those who use this software
     61  * should report any bugs to
     62  *
     63  *		fdlibm-comments (at) sunpro.eng.sun.com
     64  *
     65  * -- K.C. Ng, Oct 12, 1992
     66  * ************************************************
     67  */
     68 
     69 /* double j0(double x), y0(double x)
     70  * Bessel function of the first and second kinds of order zero.
     71  * Method -- j0(x):
     72  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
     73  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
     74  *	   for x in (0,2)
     75  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
     76  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
     77  *	   for x in (2,inf)
     78  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
     79  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
     80  *	   as follow:
     81  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
     82  *			= 1/sqrt(2) * (cos(x) + sin(x))
     83  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
     84  *			= 1/sqrt(2) * (sin(x) - cos(x))
     85  * 	   (To avoid cancellation, use
     86  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     87  * 	    to compute the worse one.)
     88  *
     89  *	3 Special cases
     90  *		j0(nan)= nan
     91  *		j0(0) = 1
     92  *		j0(inf) = 0
     93  *
     94  * Method -- y0(x):
     95  *	1. For x<2.
     96  *	   Since
     97  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
     98  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
     99  *	   We use the following function to approximate y0,
    100  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
    101  *	   where
    102  *		U(z) = u0 + u1*z + ... + u6*z^6
    103  *		V(z) = 1  + v1*z + ... + v4*z^4
    104  *	   with absolute approximation error bounded by 2**-72.
    105  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
    106  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
    107  *	2. For x>=2.
    108  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
    109  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
    110  *	   by the method mentioned above.
    111  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
    112  */
    113 
    114 #include <math.h>
    115 #include <float.h>
    116 #include <errno.h>
    117 
    118 #if defined(vax) || defined(tahoe)
    119 #define _IEEE	0
    120 #else
    121 #define _IEEE	1
    122 #define infnan(x) (0.0)
    123 #endif
    124 
    125 static double pzero __P((double)), qzero __P((double));
    126 
    127 static double
    128 huge 	= 1e300,
    129 zero    = 0.0,
    130 one	= 1.0,
    131 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    132 tpi	= 0.636619772367581343075535053490057448,
    133  		/* R0/S0 on [0, 2.00] */
    134 r02 =   1.562499999999999408594634421055018003102e-0002,
    135 r03 =  -1.899792942388547334476601771991800712355e-0004,
    136 r04 =   1.829540495327006565964161150603950916854e-0006,
    137 r05 =  -4.618326885321032060803075217804816988758e-0009,
    138 s01 =   1.561910294648900170180789369288114642057e-0002,
    139 s02 =   1.169267846633374484918570613449245536323e-0004,
    140 s03 =   5.135465502073181376284426245689510134134e-0007,
    141 s04 =   1.166140033337900097836930825478674320464e-0009;
    142 
    143 double
    144 j0(x)
    145 	double x;
    146 {
    147 	double z, s,c,ss,cc,r,u,v;
    148 
    149 	if (!finite(x))
    150 		if (_IEEE) return one/(x*x);
    151 		else return (0);
    152 	x = fabs(x);
    153 	if (x >= 2.0) {	/* |x| >= 2.0 */
    154 		s = sin(x);
    155 		c = cos(x);
    156 		ss = s-c;
    157 		cc = s+c;
    158 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    159 		    z = -cos(x+x);
    160 		    if ((s*c)<zero) cc = z/ss;
    161 		    else 	    ss = z/cc;
    162 		}
    163 	/*
    164 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    165 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    166 	 */
    167 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
    168 			z = (invsqrtpi*cc)/sqrt(x);
    169 		else {
    170 		    u = pzero(x); v = qzero(x);
    171 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
    172 		}
    173 		return z;
    174 	}
    175 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
    176 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
    177 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
    178 			return one;
    179 	        else return (one - 0.25*x*x);
    180 	    }
    181 	}
    182 	z = x*x;
    183 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
    184 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
    185 	if (x < one) {			/* |x| < 1.00 */
    186 	    return (one + z*(-0.25+(r/s)));
    187 	} else {
    188 	    u = 0.5*x;
    189 	    return ((one+u)*(one-u)+z*(r/s));
    190 	}
    191 }
    192 
    193 static double
    194 u00 =  -7.380429510868722527422411862872999615628e-0002,
    195 u01 =   1.766664525091811069896442906220827182707e-0001,
    196 u02 =  -1.381856719455968955440002438182885835344e-0002,
    197 u03 =   3.474534320936836562092566861515617053954e-0004,
    198 u04 =  -3.814070537243641752631729276103284491172e-0006,
    199 u05 =   1.955901370350229170025509706510038090009e-0008,
    200 u06 =  -3.982051941321034108350630097330144576337e-0011,
    201 v01 =   1.273048348341237002944554656529224780561e-0002,
    202 v02 =   7.600686273503532807462101309675806839635e-0005,
    203 v03 =   2.591508518404578033173189144579208685163e-0007,
    204 v04 =   4.411103113326754838596529339004302243157e-0010;
    205 
    206 double
    207 y0(x)
    208 	double x;
    209 {
    210 	double z, s, c, ss, cc, u, v;
    211     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
    212 	if (!finite(x))
    213 		if (_IEEE)
    214 			return (one/(x+x*x));
    215 		else
    216 			return (0);
    217         if (x == 0)
    218 		if (_IEEE)	return (-one/zero);
    219 		else		return(infnan(-ERANGE));
    220         if (x<0)
    221 		if (_IEEE)	return (zero/zero);
    222 		else		return (infnan(EDOM));
    223         if (x >= 2.00) {	/* |x| >= 2.0 */
    224         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
    225          * where x0 = x-pi/4
    226          *      Better formula:
    227          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    228          *                      =  1/sqrt(2) * (sin(x) + cos(x))
    229          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    230          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    231          * To avoid cancellation, use
    232          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    233          * to compute the worse one.
    234          */
    235                 s = sin(x);
    236                 c = cos(x);
    237                 ss = s-c;
    238                 cc = s+c;
    239 	/*
    240 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    241 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    242 	 */
    243                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    244                     z = -cos(x+x);
    245                     if ((s*c)<zero) cc = z/ss;
    246                     else            ss = z/cc;
    247                 }
    248                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
    249 			z = (invsqrtpi*ss)/sqrt(x);
    250                 else {
    251                     u = pzero(x); v = qzero(x);
    252                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    253                 }
    254                 return z;
    255 	}
    256 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
    257 	    return (u00 + tpi*log(x));
    258 	}
    259 	z = x*x;
    260 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
    261 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
    262 	return (u/v + tpi*(j0(x)*log(x)));
    263 }
    264 
    265 /* The asymptotic expansions of pzero is
    266  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
    267  * For x >= 2, We approximate pzero by
    268  * 	pzero(x) = 1 + (R/S)
    269  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    270  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    271  * and
    272  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
    273  */
    274 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    275    0.0,
    276   -7.031249999999003994151563066182798210142e-0002,
    277   -8.081670412753498508883963849859423939871e+0000,
    278   -2.570631056797048755890526455854482662510e+0002,
    279   -2.485216410094288379417154382189125598962e+0003,
    280   -5.253043804907295692946647153614119665649e+0003,
    281 };
    282 static double ps8[5] = {
    283    1.165343646196681758075176077627332052048e+0002,
    284    3.833744753641218451213253490882686307027e+0003,
    285    4.059785726484725470626341023967186966531e+0004,
    286    1.167529725643759169416844015694440325519e+0005,
    287    4.762772841467309430100106254805711722972e+0004,
    288 };
    289 
    290 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    291   -1.141254646918944974922813501362824060117e-0011,
    292   -7.031249408735992804117367183001996028304e-0002,
    293   -4.159610644705877925119684455252125760478e+0000,
    294   -6.767476522651671942610538094335912346253e+0001,
    295   -3.312312996491729755731871867397057689078e+0002,
    296   -3.464333883656048910814187305901796723256e+0002,
    297 };
    298 static double ps5[5] = {
    299    6.075393826923003305967637195319271932944e+0001,
    300    1.051252305957045869801410979087427910437e+0003,
    301    5.978970943338558182743915287887408780344e+0003,
    302    9.625445143577745335793221135208591603029e+0003,
    303    2.406058159229391070820491174867406875471e+0003,
    304 };
    305 
    306 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    307   -2.547046017719519317420607587742992297519e-0009,
    308   -7.031196163814817199050629727406231152464e-0002,
    309   -2.409032215495295917537157371488126555072e+0000,
    310   -2.196597747348830936268718293366935843223e+0001,
    311   -5.807917047017375458527187341817239891940e+0001,
    312   -3.144794705948885090518775074177485744176e+0001,
    313 };
    314 static double ps3[5] = {
    315    3.585603380552097167919946472266854507059e+0001,
    316    3.615139830503038919981567245265266294189e+0002,
    317    1.193607837921115243628631691509851364715e+0003,
    318    1.127996798569074250675414186814529958010e+0003,
    319    1.735809308133357510239737333055228118910e+0002,
    320 };
    321 
    322 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    323   -8.875343330325263874525704514800809730145e-0008,
    324   -7.030309954836247756556445443331044338352e-0002,
    325   -1.450738467809529910662233622603401167409e+0000,
    326   -7.635696138235277739186371273434739292491e+0000,
    327   -1.119316688603567398846655082201614524650e+0001,
    328   -3.233645793513353260006821113608134669030e+0000,
    329 };
    330 static double ps2[5] = {
    331    2.222029975320888079364901247548798910952e+0001,
    332    1.362067942182152109590340823043813120940e+0002,
    333    2.704702786580835044524562897256790293238e+0002,
    334    1.538753942083203315263554770476850028583e+0002,
    335    1.465761769482561965099880599279699314477e+0001,
    336 };
    337 
    338 static double pzero(x)
    339 	double x;
    340 {
    341 	double *p,*q,z,r,s;
    342 	if (x >= 8.00)			   {p = pr8; q= ps8;}
    343 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
    344 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
    345 	else if (x >= 2.00)		   {p = pr2; q= ps2;}
    346 	z = one/(x*x);
    347 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    348 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    349 	return one+ r/s;
    350 }
    351 
    352 
    353 /* For x >= 8, the asymptotic expansions of qzero is
    354  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
    355  * We approximate pzero by
    356  * 	qzero(x) = s*(-1.25 + (R/S))
    357  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    358  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
    359  * and
    360  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
    361  */
    362 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    363    0.0,
    364    7.324218749999350414479738504551775297096e-0002,
    365    1.176820646822526933903301695932765232456e+0001,
    366    5.576733802564018422407734683549251364365e+0002,
    367    8.859197207564685717547076568608235802317e+0003,
    368    3.701462677768878501173055581933725704809e+0004,
    369 };
    370 static double qs8[6] = {
    371    1.637760268956898345680262381842235272369e+0002,
    372    8.098344946564498460163123708054674227492e+0003,
    373    1.425382914191204905277585267143216379136e+0005,
    374    8.033092571195144136565231198526081387047e+0005,
    375    8.405015798190605130722042369969184811488e+0005,
    376   -3.438992935378666373204500729736454421006e+0005,
    377 };
    378 
    379 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    380    1.840859635945155400568380711372759921179e-0011,
    381    7.324217666126847411304688081129741939255e-0002,
    382    5.835635089620569401157245917610984757296e+0000,
    383    1.351115772864498375785526599119895942361e+0002,
    384    1.027243765961641042977177679021711341529e+0003,
    385    1.989977858646053872589042328678602481924e+0003,
    386 };
    387 static double qs5[6] = {
    388    8.277661022365377058749454444343415524509e+0001,
    389    2.077814164213929827140178285401017305309e+0003,
    390    1.884728877857180787101956800212453218179e+0004,
    391    5.675111228949473657576693406600265778689e+0004,
    392    3.597675384251145011342454247417399490174e+0004,
    393   -5.354342756019447546671440667961399442388e+0003,
    394 };
    395 
    396 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    397    4.377410140897386263955149197672576223054e-0009,
    398    7.324111800429115152536250525131924283018e-0002,
    399    3.344231375161707158666412987337679317358e+0000,
    400    4.262184407454126175974453269277100206290e+0001,
    401    1.708080913405656078640701512007621675724e+0002,
    402    1.667339486966511691019925923456050558293e+0002,
    403 };
    404 static double qs3[6] = {
    405    4.875887297245871932865584382810260676713e+0001,
    406    7.096892210566060535416958362640184894280e+0002,
    407    3.704148226201113687434290319905207398682e+0003,
    408    6.460425167525689088321109036469797462086e+0003,
    409    2.516333689203689683999196167394889715078e+0003,
    410   -1.492474518361563818275130131510339371048e+0002,
    411 };
    412 
    413 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    414    1.504444448869832780257436041633206366087e-0007,
    415    7.322342659630792930894554535717104926902e-0002,
    416    1.998191740938159956838594407540292600331e+0000,
    417    1.449560293478857407645853071687125850962e+0001,
    418    3.166623175047815297062638132537957315395e+0001,
    419    1.625270757109292688799540258329430963726e+0001,
    420 };
    421 static double qs2[6] = {
    422    3.036558483552191922522729838478169383969e+0001,
    423    2.693481186080498724211751445725708524507e+0002,
    424    8.447837575953201460013136756723746023736e+0002,
    425    8.829358451124885811233995083187666981299e+0002,
    426    2.126663885117988324180482985363624996652e+0002,
    427   -5.310954938826669402431816125780738924463e+0000,
    428 };
    429 
    430 static double qzero(x)
    431 	double x;
    432 {
    433 	double *p,*q, s,r,z;
    434 	if (x >= 8.00)			   {p = qr8; q= qs8;}
    435 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
    436 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
    437 	else if (x >= 2.00)		   {p = qr2; q= qs2;}
    438 	z = one/(x*x);
    439 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    440 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    441 	return (-.125 + r/s)/x;
    442 }
    443