Home | History | Annotate | Line # | Download | only in noieee_src
n_j0.c revision 1.3
      1 /*	$NetBSD: n_j0.c,v 1.3 1998/10/20 02:26:11 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 /*
     42  * 16 December 1992
     43  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     44  */
     45 
     46 /*
     47  * ====================================================
     48  * Copyright (C) 1992 by Sun Microsystems, Inc.
     49  *
     50  * Developed at SunPro, a Sun Microsystems, Inc. business.
     51  * Permission to use, copy, modify, and distribute this
     52  * software is freely granted, provided that this notice
     53  * is preserved.
     54  * ====================================================
     55  *
     56  * ******************* WARNING ********************
     57  * This is an alpha version of SunPro's FDLIBM (Freely
     58  * Distributable Math Library) for IEEE double precision
     59  * arithmetic. FDLIBM is a basic math library written
     60  * in C that runs on machines that conform to IEEE
     61  * Standard 754/854. This alpha version is distributed
     62  * for testing purpose. Those who use this software
     63  * should report any bugs to
     64  *
     65  *		fdlibm-comments (at) sunpro.eng.sun.com
     66  *
     67  * -- K.C. Ng, Oct 12, 1992
     68  * ************************************************
     69  */
     70 
     71 /* double j0(double x), y0(double x)
     72  * Bessel function of the first and second kinds of order zero.
     73  * Method -- j0(x):
     74  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
     75  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
     76  *	   for x in (0,2)
     77  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
     78  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
     79  *	   for x in (2,inf)
     80  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
     81  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
     82  *	   as follow:
     83  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
     84  *			= 1/sqrt(2) * (cos(x) + sin(x))
     85  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
     86  *			= 1/sqrt(2) * (sin(x) - cos(x))
     87  * 	   (To avoid cancellation, use
     88  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     89  * 	    to compute the worse one.)
     90  *
     91  *	3 Special cases
     92  *		j0(nan)= nan
     93  *		j0(0) = 1
     94  *		j0(inf) = 0
     95  *
     96  * Method -- y0(x):
     97  *	1. For x<2.
     98  *	   Since
     99  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
    100  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
    101  *	   We use the following function to approximate y0,
    102  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
    103  *	   where
    104  *		U(z) = u0 + u1*z + ... + u6*z^6
    105  *		V(z) = 1  + v1*z + ... + v4*z^4
    106  *	   with absolute approximation error bounded by 2**-72.
    107  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
    108  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
    109  *	2. For x>=2.
    110  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
    111  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
    112  *	   by the method mentioned above.
    113  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
    114  */
    115 
    116 #include "mathimpl.h"
    117 #include <float.h>
    118 #include <errno.h>
    119 
    120 #if defined(__vax__) || defined(tahoe)
    121 #define _IEEE	0
    122 #else
    123 #define _IEEE	1
    124 #define infnan(x) (0.0)
    125 #endif
    126 
    127 static double pzero __P((double)), qzero __P((double));
    128 
    129 static double
    130 huge 	= 1e300,
    131 zero    = 0.0,
    132 one	= 1.0,
    133 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    134 tpi	= 0.636619772367581343075535053490057448,
    135  		/* R0/S0 on [0, 2.00] */
    136 r02 =   1.562499999999999408594634421055018003102e-0002,
    137 r03 =  -1.899792942388547334476601771991800712355e-0004,
    138 r04 =   1.829540495327006565964161150603950916854e-0006,
    139 r05 =  -4.618326885321032060803075217804816988758e-0009,
    140 s01 =   1.561910294648900170180789369288114642057e-0002,
    141 s02 =   1.169267846633374484918570613449245536323e-0004,
    142 s03 =   5.135465502073181376284426245689510134134e-0007,
    143 s04 =   1.166140033337900097836930825478674320464e-0009;
    144 
    145 double
    146 j0(x)
    147 	double x;
    148 {
    149 	double z, s,c,ss,cc,r,u,v;
    150 
    151 	if (!finite(x)) {
    152 		if (_IEEE) return one/(x*x);
    153 		else return (0);
    154 	}
    155 	x = fabs(x);
    156 	if (x >= 2.0) {	/* |x| >= 2.0 */
    157 		s = sin(x);
    158 		c = cos(x);
    159 		ss = s-c;
    160 		cc = s+c;
    161 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    162 		    z = -cos(x+x);
    163 		    if ((s*c)<zero) cc = z/ss;
    164 		    else 	    ss = z/cc;
    165 		}
    166 	/*
    167 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    168 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    169 	 */
    170 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
    171 			z = (invsqrtpi*cc)/sqrt(x);
    172 		else {
    173 		    u = pzero(x); v = qzero(x);
    174 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
    175 		}
    176 		return z;
    177 	}
    178 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
    179 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
    180 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
    181 			return one;
    182 	        else return (one - 0.25*x*x);
    183 	    }
    184 	}
    185 	z = x*x;
    186 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
    187 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
    188 	if (x < one) {			/* |x| < 1.00 */
    189 	    return (one + z*(-0.25+(r/s)));
    190 	} else {
    191 	    u = 0.5*x;
    192 	    return ((one+u)*(one-u)+z*(r/s));
    193 	}
    194 }
    195 
    196 static double
    197 u00 =  -7.380429510868722527422411862872999615628e-0002,
    198 u01 =   1.766664525091811069896442906220827182707e-0001,
    199 u02 =  -1.381856719455968955440002438182885835344e-0002,
    200 u03 =   3.474534320936836562092566861515617053954e-0004,
    201 u04 =  -3.814070537243641752631729276103284491172e-0006,
    202 u05 =   1.955901370350229170025509706510038090009e-0008,
    203 u06 =  -3.982051941321034108350630097330144576337e-0011,
    204 v01 =   1.273048348341237002944554656529224780561e-0002,
    205 v02 =   7.600686273503532807462101309675806839635e-0005,
    206 v03 =   2.591508518404578033173189144579208685163e-0007,
    207 v04 =   4.411103113326754838596529339004302243157e-0010;
    208 
    209 double
    210 y0(x)
    211 	double x;
    212 {
    213 	double z, s, c, ss, cc, u, v;
    214     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
    215 	if (!finite(x)) {
    216 		if (_IEEE)
    217 			return (one/(x+x*x));
    218 		else
    219 			return (0);
    220 	}
    221         if (x == 0) {
    222 		if (_IEEE)	return (-one/zero);
    223 		else		return(infnan(-ERANGE));
    224 	}
    225         if (x<0) {
    226 		if (_IEEE)	return (zero/zero);
    227 		else		return (infnan(EDOM));
    228 	}
    229         if (x >= 2.00) {	/* |x| >= 2.0 */
    230         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
    231          * where x0 = x-pi/4
    232          *      Better formula:
    233          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    234          *                      =  1/sqrt(2) * (sin(x) + cos(x))
    235          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    236          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    237          * To avoid cancellation, use
    238          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    239          * to compute the worse one.
    240          */
    241                 s = sin(x);
    242                 c = cos(x);
    243                 ss = s-c;
    244                 cc = s+c;
    245 	/*
    246 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    247 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    248 	 */
    249                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
    250                     z = -cos(x+x);
    251                     if ((s*c)<zero) cc = z/ss;
    252                     else            ss = z/cc;
    253                 }
    254                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
    255 			z = (invsqrtpi*ss)/sqrt(x);
    256                 else {
    257                     u = pzero(x); v = qzero(x);
    258                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    259                 }
    260                 return z;
    261 	}
    262 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
    263 	    return (u00 + tpi*log(x));
    264 	}
    265 	z = x*x;
    266 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
    267 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
    268 	return (u/v + tpi*(j0(x)*log(x)));
    269 }
    270 
    271 /* The asymptotic expansions of pzero is
    272  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
    273  * For x >= 2, We approximate pzero by
    274  * 	pzero(x) = 1 + (R/S)
    275  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    276  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    277  * and
    278  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
    279  */
    280 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    281    0.0,
    282   -7.031249999999003994151563066182798210142e-0002,
    283   -8.081670412753498508883963849859423939871e+0000,
    284   -2.570631056797048755890526455854482662510e+0002,
    285   -2.485216410094288379417154382189125598962e+0003,
    286   -5.253043804907295692946647153614119665649e+0003,
    287 };
    288 static double ps8[5] = {
    289    1.165343646196681758075176077627332052048e+0002,
    290    3.833744753641218451213253490882686307027e+0003,
    291    4.059785726484725470626341023967186966531e+0004,
    292    1.167529725643759169416844015694440325519e+0005,
    293    4.762772841467309430100106254805711722972e+0004,
    294 };
    295 
    296 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    297   -1.141254646918944974922813501362824060117e-0011,
    298   -7.031249408735992804117367183001996028304e-0002,
    299   -4.159610644705877925119684455252125760478e+0000,
    300   -6.767476522651671942610538094335912346253e+0001,
    301   -3.312312996491729755731871867397057689078e+0002,
    302   -3.464333883656048910814187305901796723256e+0002,
    303 };
    304 static double ps5[5] = {
    305    6.075393826923003305967637195319271932944e+0001,
    306    1.051252305957045869801410979087427910437e+0003,
    307    5.978970943338558182743915287887408780344e+0003,
    308    9.625445143577745335793221135208591603029e+0003,
    309    2.406058159229391070820491174867406875471e+0003,
    310 };
    311 
    312 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    313   -2.547046017719519317420607587742992297519e-0009,
    314   -7.031196163814817199050629727406231152464e-0002,
    315   -2.409032215495295917537157371488126555072e+0000,
    316   -2.196597747348830936268718293366935843223e+0001,
    317   -5.807917047017375458527187341817239891940e+0001,
    318   -3.144794705948885090518775074177485744176e+0001,
    319 };
    320 static double ps3[5] = {
    321    3.585603380552097167919946472266854507059e+0001,
    322    3.615139830503038919981567245265266294189e+0002,
    323    1.193607837921115243628631691509851364715e+0003,
    324    1.127996798569074250675414186814529958010e+0003,
    325    1.735809308133357510239737333055228118910e+0002,
    326 };
    327 
    328 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    329   -8.875343330325263874525704514800809730145e-0008,
    330   -7.030309954836247756556445443331044338352e-0002,
    331   -1.450738467809529910662233622603401167409e+0000,
    332   -7.635696138235277739186371273434739292491e+0000,
    333   -1.119316688603567398846655082201614524650e+0001,
    334   -3.233645793513353260006821113608134669030e+0000,
    335 };
    336 static double ps2[5] = {
    337    2.222029975320888079364901247548798910952e+0001,
    338    1.362067942182152109590340823043813120940e+0002,
    339    2.704702786580835044524562897256790293238e+0002,
    340    1.538753942083203315263554770476850028583e+0002,
    341    1.465761769482561965099880599279699314477e+0001,
    342 };
    343 
    344 static double pzero(x)
    345 	double x;
    346 {
    347 	double *p,*q,z,r,s;
    348 	if (x >= 8.00)			   {p = pr8; q= ps8;}
    349 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
    350 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
    351 	else /* if (x >= 2.00) */	   {p = pr2; q= ps2;}
    352 	z = one/(x*x);
    353 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    354 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    355 	return one+ r/s;
    356 }
    357 
    358 
    359 /* For x >= 8, the asymptotic expansions of qzero is
    360  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
    361  * We approximate pzero by
    362  * 	qzero(x) = s*(-1.25 + (R/S))
    363  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    364  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
    365  * and
    366  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
    367  */
    368 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    369    0.0,
    370    7.324218749999350414479738504551775297096e-0002,
    371    1.176820646822526933903301695932765232456e+0001,
    372    5.576733802564018422407734683549251364365e+0002,
    373    8.859197207564685717547076568608235802317e+0003,
    374    3.701462677768878501173055581933725704809e+0004,
    375 };
    376 static double qs8[6] = {
    377    1.637760268956898345680262381842235272369e+0002,
    378    8.098344946564498460163123708054674227492e+0003,
    379    1.425382914191204905277585267143216379136e+0005,
    380    8.033092571195144136565231198526081387047e+0005,
    381    8.405015798190605130722042369969184811488e+0005,
    382   -3.438992935378666373204500729736454421006e+0005,
    383 };
    384 
    385 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    386    1.840859635945155400568380711372759921179e-0011,
    387    7.324217666126847411304688081129741939255e-0002,
    388    5.835635089620569401157245917610984757296e+0000,
    389    1.351115772864498375785526599119895942361e+0002,
    390    1.027243765961641042977177679021711341529e+0003,
    391    1.989977858646053872589042328678602481924e+0003,
    392 };
    393 static double qs5[6] = {
    394    8.277661022365377058749454444343415524509e+0001,
    395    2.077814164213929827140178285401017305309e+0003,
    396    1.884728877857180787101956800212453218179e+0004,
    397    5.675111228949473657576693406600265778689e+0004,
    398    3.597675384251145011342454247417399490174e+0004,
    399   -5.354342756019447546671440667961399442388e+0003,
    400 };
    401 
    402 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    403    4.377410140897386263955149197672576223054e-0009,
    404    7.324111800429115152536250525131924283018e-0002,
    405    3.344231375161707158666412987337679317358e+0000,
    406    4.262184407454126175974453269277100206290e+0001,
    407    1.708080913405656078640701512007621675724e+0002,
    408    1.667339486966511691019925923456050558293e+0002,
    409 };
    410 static double qs3[6] = {
    411    4.875887297245871932865584382810260676713e+0001,
    412    7.096892210566060535416958362640184894280e+0002,
    413    3.704148226201113687434290319905207398682e+0003,
    414    6.460425167525689088321109036469797462086e+0003,
    415    2.516333689203689683999196167394889715078e+0003,
    416   -1.492474518361563818275130131510339371048e+0002,
    417 };
    418 
    419 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    420    1.504444448869832780257436041633206366087e-0007,
    421    7.322342659630792930894554535717104926902e-0002,
    422    1.998191740938159956838594407540292600331e+0000,
    423    1.449560293478857407645853071687125850962e+0001,
    424    3.166623175047815297062638132537957315395e+0001,
    425    1.625270757109292688799540258329430963726e+0001,
    426 };
    427 static double qs2[6] = {
    428    3.036558483552191922522729838478169383969e+0001,
    429    2.693481186080498724211751445725708524507e+0002,
    430    8.447837575953201460013136756723746023736e+0002,
    431    8.829358451124885811233995083187666981299e+0002,
    432    2.126663885117988324180482985363624996652e+0002,
    433   -5.310954938826669402431816125780738924463e+0000,
    434 };
    435 
    436 static double qzero(x)
    437 	double x;
    438 {
    439 	double *p,*q, s,r,z;
    440 	if (x >= 8.00)			   {p = qr8; q= qs8;}
    441 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
    442 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
    443 	else /* if (x >= 2.00) */	   {p = qr2; q= qs2;}
    444 	z = one/(x*x);
    445 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    446 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    447 	return (-.125 + r/s)/x;
    448 }
    449