n_j1.c revision 1.1 1 1.1 ragge /* $NetBSD: n_j1.c,v 1.1 1995/10/10 23:36:53 ragge Exp $ */
2 1.1 ragge /*-
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.1 ragge static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
37 1.1 ragge #endif /* not lint */
38 1.1 ragge
39 1.1 ragge /*
40 1.1 ragge * 16 December 1992
41 1.1 ragge * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
42 1.1 ragge */
43 1.1 ragge
44 1.1 ragge /*
45 1.1 ragge * ====================================================
46 1.1 ragge * Copyright (C) 1992 by Sun Microsystems, Inc.
47 1.1 ragge *
48 1.1 ragge * Developed at SunPro, a Sun Microsystems, Inc. business.
49 1.1 ragge * Permission to use, copy, modify, and distribute this
50 1.1 ragge * software is freely granted, provided that this notice
51 1.1 ragge * is preserved.
52 1.1 ragge * ====================================================
53 1.1 ragge *
54 1.1 ragge * ******************* WARNING ********************
55 1.1 ragge * This is an alpha version of SunPro's FDLIBM (Freely
56 1.1 ragge * Distributable Math Library) for IEEE double precision
57 1.1 ragge * arithmetic. FDLIBM is a basic math library written
58 1.1 ragge * in C that runs on machines that conform to IEEE
59 1.1 ragge * Standard 754/854. This alpha version is distributed
60 1.1 ragge * for testing purpose. Those who use this software
61 1.1 ragge * should report any bugs to
62 1.1 ragge *
63 1.1 ragge * fdlibm-comments (at) sunpro.eng.sun.com
64 1.1 ragge *
65 1.1 ragge * -- K.C. Ng, Oct 12, 1992
66 1.1 ragge * ************************************************
67 1.1 ragge */
68 1.1 ragge
69 1.1 ragge /* double j1(double x), y1(double x)
70 1.1 ragge * Bessel function of the first and second kinds of order zero.
71 1.1 ragge * Method -- j1(x):
72 1.1 ragge * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
73 1.1 ragge * 2. Reduce x to |x| since j1(x)=-j1(-x), and
74 1.1 ragge * for x in (0,2)
75 1.1 ragge * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
76 1.1 ragge * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
77 1.1 ragge * for x in (2,inf)
78 1.1 ragge * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
79 1.1 ragge * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
80 1.1 ragge * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
81 1.1 ragge * as follows:
82 1.1 ragge * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
83 1.1 ragge * = 1/sqrt(2) * (sin(x) - cos(x))
84 1.1 ragge * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
85 1.1 ragge * = -1/sqrt(2) * (sin(x) + cos(x))
86 1.1 ragge * (To avoid cancellation, use
87 1.1 ragge * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
88 1.1 ragge * to compute the worse one.)
89 1.1 ragge *
90 1.1 ragge * 3 Special cases
91 1.1 ragge * j1(nan)= nan
92 1.1 ragge * j1(0) = 0
93 1.1 ragge * j1(inf) = 0
94 1.1 ragge *
95 1.1 ragge * Method -- y1(x):
96 1.1 ragge * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
97 1.1 ragge * 2. For x<2.
98 1.1 ragge * Since
99 1.1 ragge * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
100 1.1 ragge * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
101 1.1 ragge * We use the following function to approximate y1,
102 1.1 ragge * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
103 1.1 ragge * where for x in [0,2] (abs err less than 2**-65.89)
104 1.1 ragge * U(z) = u0 + u1*z + ... + u4*z^4
105 1.1 ragge * V(z) = 1 + v1*z + ... + v5*z^5
106 1.1 ragge * Note: For tiny x, 1/x dominate y1 and hence
107 1.1 ragge * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
108 1.1 ragge * 3. For x>=2.
109 1.1 ragge * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
110 1.1 ragge * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
111 1.1 ragge * by method mentioned above.
112 1.1 ragge */
113 1.1 ragge
114 1.1 ragge #include <math.h>
115 1.1 ragge #include <float.h>
116 1.1 ragge #include <errno.h>
117 1.1 ragge
118 1.1 ragge #if defined(vax) || defined(tahoe)
119 1.1 ragge #define _IEEE 0
120 1.1 ragge #else
121 1.1 ragge #define _IEEE 1
122 1.1 ragge #define infnan(x) (0.0)
123 1.1 ragge #endif
124 1.1 ragge
125 1.1 ragge static double pone(), qone();
126 1.1 ragge
127 1.1 ragge static double
128 1.1 ragge huge = 1e300,
129 1.1 ragge zero = 0.0,
130 1.1 ragge one = 1.0,
131 1.1 ragge invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
132 1.1 ragge tpi = 0.636619772367581343075535053490057448,
133 1.1 ragge
134 1.1 ragge /* R0/S0 on [0,2] */
135 1.1 ragge r00 = -6.250000000000000020842322918309200910191e-0002,
136 1.1 ragge r01 = 1.407056669551897148204830386691427791200e-0003,
137 1.1 ragge r02 = -1.599556310840356073980727783817809847071e-0005,
138 1.1 ragge r03 = 4.967279996095844750387702652791615403527e-0008,
139 1.1 ragge s01 = 1.915375995383634614394860200531091839635e-0002,
140 1.1 ragge s02 = 1.859467855886309024045655476348872850396e-0004,
141 1.1 ragge s03 = 1.177184640426236767593432585906758230822e-0006,
142 1.1 ragge s04 = 5.046362570762170559046714468225101016915e-0009,
143 1.1 ragge s05 = 1.235422744261379203512624973117299248281e-0011;
144 1.1 ragge
145 1.1 ragge #define two_129 6.80564733841876926e+038 /* 2^129 */
146 1.1 ragge #define two_m54 5.55111512312578270e-017 /* 2^-54 */
147 1.1 ragge double j1(x)
148 1.1 ragge double x;
149 1.1 ragge {
150 1.1 ragge double z, s,c,ss,cc,r,u,v,y;
151 1.1 ragge y = fabs(x);
152 1.1 ragge if (!finite(x)) /* Inf or NaN */
153 1.1 ragge if (_IEEE && x != x)
154 1.1 ragge return(x);
155 1.1 ragge else
156 1.1 ragge return (copysign(x, zero));
157 1.1 ragge y = fabs(x);
158 1.1 ragge if (y >= 2) /* |x| >= 2.0 */
159 1.1 ragge {
160 1.1 ragge s = sin(y);
161 1.1 ragge c = cos(y);
162 1.1 ragge ss = -s-c;
163 1.1 ragge cc = s-c;
164 1.1 ragge if (y < .5*DBL_MAX) { /* make sure y+y not overflow */
165 1.1 ragge z = cos(y+y);
166 1.1 ragge if ((s*c)<zero) cc = z/ss;
167 1.1 ragge else ss = z/cc;
168 1.1 ragge }
169 1.1 ragge /*
170 1.1 ragge * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
171 1.1 ragge * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
172 1.1 ragge */
173 1.1 ragge #if !defined(vax) && !defined(tahoe)
174 1.1 ragge if (y > two_129) /* x > 2^129 */
175 1.1 ragge z = (invsqrtpi*cc)/sqrt(y);
176 1.1 ragge else
177 1.1 ragge #endif /* defined(vax) || defined(tahoe) */
178 1.1 ragge {
179 1.1 ragge u = pone(y); v = qone(y);
180 1.1 ragge z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
181 1.1 ragge }
182 1.1 ragge if (x < 0) return -z;
183 1.1 ragge else return z;
184 1.1 ragge }
185 1.1 ragge if (y < 7.450580596923828125e-009) { /* |x|<2**-27 */
186 1.1 ragge if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
187 1.1 ragge }
188 1.1 ragge z = x*x;
189 1.1 ragge r = z*(r00+z*(r01+z*(r02+z*r03)));
190 1.1 ragge s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
191 1.1 ragge r *= x;
192 1.1 ragge return (x*0.5+r/s);
193 1.1 ragge }
194 1.1 ragge
195 1.1 ragge static double u0[5] = {
196 1.1 ragge -1.960570906462389484206891092512047539632e-0001,
197 1.1 ragge 5.044387166398112572026169863174882070274e-0002,
198 1.1 ragge -1.912568958757635383926261729464141209569e-0003,
199 1.1 ragge 2.352526005616105109577368905595045204577e-0005,
200 1.1 ragge -9.190991580398788465315411784276789663849e-0008,
201 1.1 ragge };
202 1.1 ragge static double v0[5] = {
203 1.1 ragge 1.991673182366499064031901734535479833387e-0002,
204 1.1 ragge 2.025525810251351806268483867032781294682e-0004,
205 1.1 ragge 1.356088010975162198085369545564475416398e-0006,
206 1.1 ragge 6.227414523646214811803898435084697863445e-0009,
207 1.1 ragge 1.665592462079920695971450872592458916421e-0011,
208 1.1 ragge };
209 1.1 ragge
210 1.1 ragge double y1(x)
211 1.1 ragge double x;
212 1.1 ragge {
213 1.1 ragge double z, s, c, ss, cc, u, v;
214 1.1 ragge /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
215 1.1 ragge if (!finite(x))
216 1.1 ragge if (!_IEEE) return (infnan(EDOM));
217 1.1 ragge else if (x < 0)
218 1.1 ragge return(zero/zero);
219 1.1 ragge else if (x > 0)
220 1.1 ragge return (0);
221 1.1 ragge else
222 1.1 ragge return(x);
223 1.1 ragge if (x <= 0) {
224 1.1 ragge if (_IEEE && x == 0) return -one/zero;
225 1.1 ragge else if(x == 0) return(infnan(-ERANGE));
226 1.1 ragge else if(_IEEE) return (zero/zero);
227 1.1 ragge else return(infnan(EDOM));
228 1.1 ragge }
229 1.1 ragge if (x >= 2) /* |x| >= 2.0 */
230 1.1 ragge {
231 1.1 ragge s = sin(x);
232 1.1 ragge c = cos(x);
233 1.1 ragge ss = -s-c;
234 1.1 ragge cc = s-c;
235 1.1 ragge if (x < .5 * DBL_MAX) /* make sure x+x not overflow */
236 1.1 ragge {
237 1.1 ragge z = cos(x+x);
238 1.1 ragge if ((s*c)>zero) cc = z/ss;
239 1.1 ragge else ss = z/cc;
240 1.1 ragge }
241 1.1 ragge /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
242 1.1 ragge * where x0 = x-3pi/4
243 1.1 ragge * Better formula:
244 1.1 ragge * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
245 1.1 ragge * = 1/sqrt(2) * (sin(x) - cos(x))
246 1.1 ragge * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
247 1.1 ragge * = -1/sqrt(2) * (cos(x) + sin(x))
248 1.1 ragge * To avoid cancellation, use
249 1.1 ragge * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
250 1.1 ragge * to compute the worse one.
251 1.1 ragge */
252 1.1 ragge if (_IEEE && x>two_129)
253 1.1 ragge z = (invsqrtpi*ss)/sqrt(x);
254 1.1 ragge else {
255 1.1 ragge u = pone(x); v = qone(x);
256 1.1 ragge z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
257 1.1 ragge }
258 1.1 ragge return z;
259 1.1 ragge }
260 1.1 ragge if (x <= two_m54) { /* x < 2**-54 */
261 1.1 ragge return (-tpi/x);
262 1.1 ragge }
263 1.1 ragge z = x*x;
264 1.1 ragge u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
265 1.1 ragge v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
266 1.1 ragge return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
267 1.1 ragge }
268 1.1 ragge
269 1.1 ragge /* For x >= 8, the asymptotic expansions of pone is
270 1.1 ragge * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
271 1.1 ragge * We approximate pone by
272 1.1 ragge * pone(x) = 1 + (R/S)
273 1.1 ragge * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
274 1.1 ragge * S = 1 + ps0*s^2 + ... + ps4*s^10
275 1.1 ragge * and
276 1.1 ragge * | pone(x)-1-R/S | <= 2 ** ( -60.06)
277 1.1 ragge */
278 1.1 ragge
279 1.1 ragge static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
280 1.1 ragge 0.0,
281 1.1 ragge 1.171874999999886486643746274751925399540e-0001,
282 1.1 ragge 1.323948065930735690925827997575471527252e+0001,
283 1.1 ragge 4.120518543073785433325860184116512799375e+0002,
284 1.1 ragge 3.874745389139605254931106878336700275601e+0003,
285 1.1 ragge 7.914479540318917214253998253147871806507e+0003,
286 1.1 ragge };
287 1.1 ragge static double ps8[5] = {
288 1.1 ragge 1.142073703756784104235066368252692471887e+0002,
289 1.1 ragge 3.650930834208534511135396060708677099382e+0003,
290 1.1 ragge 3.695620602690334708579444954937638371808e+0004,
291 1.1 ragge 9.760279359349508334916300080109196824151e+0004,
292 1.1 ragge 3.080427206278887984185421142572315054499e+0004,
293 1.1 ragge };
294 1.1 ragge
295 1.1 ragge static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
296 1.1 ragge 1.319905195562435287967533851581013807103e-0011,
297 1.1 ragge 1.171874931906140985709584817065144884218e-0001,
298 1.1 ragge 6.802751278684328781830052995333841452280e+0000,
299 1.1 ragge 1.083081829901891089952869437126160568246e+0002,
300 1.1 ragge 5.176361395331997166796512844100442096318e+0002,
301 1.1 ragge 5.287152013633375676874794230748055786553e+0002,
302 1.1 ragge };
303 1.1 ragge static double ps5[5] = {
304 1.1 ragge 5.928059872211313557747989128353699746120e+0001,
305 1.1 ragge 9.914014187336144114070148769222018425781e+0002,
306 1.1 ragge 5.353266952914879348427003712029704477451e+0003,
307 1.1 ragge 7.844690317495512717451367787640014588422e+0003,
308 1.1 ragge 1.504046888103610723953792002716816255382e+0003,
309 1.1 ragge };
310 1.1 ragge
311 1.1 ragge static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
312 1.1 ragge 3.025039161373736032825049903408701962756e-0009,
313 1.1 ragge 1.171868655672535980750284752227495879921e-0001,
314 1.1 ragge 3.932977500333156527232725812363183251138e+0000,
315 1.1 ragge 3.511940355916369600741054592597098912682e+0001,
316 1.1 ragge 9.105501107507812029367749771053045219094e+0001,
317 1.1 ragge 4.855906851973649494139275085628195457113e+0001,
318 1.1 ragge };
319 1.1 ragge static double ps3[5] = {
320 1.1 ragge 3.479130950012515114598605916318694946754e+0001,
321 1.1 ragge 3.367624587478257581844639171605788622549e+0002,
322 1.1 ragge 1.046871399757751279180649307467612538415e+0003,
323 1.1 ragge 8.908113463982564638443204408234739237639e+0002,
324 1.1 ragge 1.037879324396392739952487012284401031859e+0002,
325 1.1 ragge };
326 1.1 ragge
327 1.1 ragge static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
328 1.1 ragge 1.077108301068737449490056513753865482831e-0007,
329 1.1 ragge 1.171762194626833490512746348050035171545e-0001,
330 1.1 ragge 2.368514966676087902251125130227221462134e+0000,
331 1.1 ragge 1.224261091482612280835153832574115951447e+0001,
332 1.1 ragge 1.769397112716877301904532320376586509782e+0001,
333 1.1 ragge 5.073523125888185399030700509321145995160e+0000,
334 1.1 ragge };
335 1.1 ragge static double ps2[5] = {
336 1.1 ragge 2.143648593638214170243114358933327983793e+0001,
337 1.1 ragge 1.252902271684027493309211410842525120355e+0002,
338 1.1 ragge 2.322764690571628159027850677565128301361e+0002,
339 1.1 ragge 1.176793732871470939654351793502076106651e+0002,
340 1.1 ragge 8.364638933716182492500902115164881195742e+0000,
341 1.1 ragge };
342 1.1 ragge
343 1.1 ragge static double pone(x)
344 1.1 ragge double x;
345 1.1 ragge {
346 1.1 ragge double *p,*q,z,r,s;
347 1.1 ragge if (x >= 8.0) {p = pr8; q= ps8;}
348 1.1 ragge else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
349 1.1 ragge else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
350 1.1 ragge else /* if (x >= 2.0) */ {p = pr2; q= ps2;}
351 1.1 ragge z = one/(x*x);
352 1.1 ragge r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
353 1.1 ragge s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
354 1.1 ragge return (one + r/s);
355 1.1 ragge }
356 1.1 ragge
357 1.1 ragge
358 1.1 ragge /* For x >= 8, the asymptotic expansions of qone is
359 1.1 ragge * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
360 1.1 ragge * We approximate pone by
361 1.1 ragge * qone(x) = s*(0.375 + (R/S))
362 1.1 ragge * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
363 1.1 ragge * S = 1 + qs1*s^2 + ... + qs6*s^12
364 1.1 ragge * and
365 1.1 ragge * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
366 1.1 ragge */
367 1.1 ragge
368 1.1 ragge static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
369 1.1 ragge 0.0,
370 1.1 ragge -1.025390624999927207385863635575804210817e-0001,
371 1.1 ragge -1.627175345445899724355852152103771510209e+0001,
372 1.1 ragge -7.596017225139501519843072766973047217159e+0002,
373 1.1 ragge -1.184980667024295901645301570813228628541e+0004,
374 1.1 ragge -4.843851242857503225866761992518949647041e+0004,
375 1.1 ragge };
376 1.1 ragge static double qs8[6] = {
377 1.1 ragge 1.613953697007229231029079421446916397904e+0002,
378 1.1 ragge 7.825385999233484705298782500926834217525e+0003,
379 1.1 ragge 1.338753362872495800748094112937868089032e+0005,
380 1.1 ragge 7.196577236832409151461363171617204036929e+0005,
381 1.1 ragge 6.666012326177764020898162762642290294625e+0005,
382 1.1 ragge -2.944902643038346618211973470809456636830e+0005,
383 1.1 ragge };
384 1.1 ragge
385 1.1 ragge static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
386 1.1 ragge -2.089799311417640889742251585097264715678e-0011,
387 1.1 ragge -1.025390502413754195402736294609692303708e-0001,
388 1.1 ragge -8.056448281239359746193011295417408828404e+0000,
389 1.1 ragge -1.836696074748883785606784430098756513222e+0002,
390 1.1 ragge -1.373193760655081612991329358017247355921e+0003,
391 1.1 ragge -2.612444404532156676659706427295870995743e+0003,
392 1.1 ragge };
393 1.1 ragge static double qs5[6] = {
394 1.1 ragge 8.127655013843357670881559763225310973118e+0001,
395 1.1 ragge 1.991798734604859732508048816860471197220e+0003,
396 1.1 ragge 1.746848519249089131627491835267411777366e+0004,
397 1.1 ragge 4.985142709103522808438758919150738000353e+0004,
398 1.1 ragge 2.794807516389181249227113445299675335543e+0004,
399 1.1 ragge -4.719183547951285076111596613593553911065e+0003,
400 1.1 ragge };
401 1.1 ragge
402 1.1 ragge static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
403 1.1 ragge -5.078312264617665927595954813341838734288e-0009,
404 1.1 ragge -1.025378298208370901410560259001035577681e-0001,
405 1.1 ragge -4.610115811394734131557983832055607679242e+0000,
406 1.1 ragge -5.784722165627836421815348508816936196402e+0001,
407 1.1 ragge -2.282445407376317023842545937526967035712e+0002,
408 1.1 ragge -2.192101284789093123936441805496580237676e+0002,
409 1.1 ragge };
410 1.1 ragge static double qs3[6] = {
411 1.1 ragge 4.766515503237295155392317984171640809318e+0001,
412 1.1 ragge 6.738651126766996691330687210949984203167e+0002,
413 1.1 ragge 3.380152866795263466426219644231687474174e+0003,
414 1.1 ragge 5.547729097207227642358288160210745890345e+0003,
415 1.1 ragge 1.903119193388108072238947732674639066045e+0003,
416 1.1 ragge -1.352011914443073322978097159157678748982e+0002,
417 1.1 ragge };
418 1.1 ragge
419 1.1 ragge static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
420 1.1 ragge -1.783817275109588656126772316921194887979e-0007,
421 1.1 ragge -1.025170426079855506812435356168903694433e-0001,
422 1.1 ragge -2.752205682781874520495702498875020485552e+0000,
423 1.1 ragge -1.966361626437037351076756351268110418862e+0001,
424 1.1 ragge -4.232531333728305108194363846333841480336e+0001,
425 1.1 ragge -2.137192117037040574661406572497288723430e+0001,
426 1.1 ragge };
427 1.1 ragge static double qs2[6] = {
428 1.1 ragge 2.953336290605238495019307530224241335502e+0001,
429 1.1 ragge 2.529815499821905343698811319455305266409e+0002,
430 1.1 ragge 7.575028348686454070022561120722815892346e+0002,
431 1.1 ragge 7.393932053204672479746835719678434981599e+0002,
432 1.1 ragge 1.559490033366661142496448853793707126179e+0002,
433 1.1 ragge -4.959498988226281813825263003231704397158e+0000,
434 1.1 ragge };
435 1.1 ragge
436 1.1 ragge static double qone(x)
437 1.1 ragge double x;
438 1.1 ragge {
439 1.1 ragge double *p,*q, s,r,z;
440 1.1 ragge if (x >= 8.0) {p = qr8; q= qs8;}
441 1.1 ragge else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
442 1.1 ragge else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
443 1.1 ragge else /* if (x >= 2.0) */ {p = qr2; q= qs2;}
444 1.1 ragge z = one/(x*x);
445 1.1 ragge r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
446 1.1 ragge s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
447 1.1 ragge return (.375 + r/s)/x;
448 1.1 ragge }
449