Home | History | Annotate | Line # | Download | only in noieee_src
n_j1.c revision 1.5
      1  1.5    matt /*	$NetBSD: n_j1.c,v 1.5 2002/06/15 00:10:17 matt Exp $	*/
      2  1.1   ragge /*-
      3  1.1   ragge  * Copyright (c) 1992, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1   ragge  *    must display the following acknowledgement:
     16  1.1   ragge  *	This product includes software developed by the University of
     17  1.1   ragge  *	California, Berkeley and its contributors.
     18  1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1   ragge  *    may be used to endorse or promote products derived from this software
     20  1.1   ragge  *    without specific prior written permission.
     21  1.1   ragge  *
     22  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1   ragge  * SUCH DAMAGE.
     33  1.1   ragge  */
     34  1.1   ragge 
     35  1.1   ragge #ifndef lint
     36  1.2   ragge #if 0
     37  1.1   ragge static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";
     38  1.2   ragge #endif
     39  1.1   ragge #endif /* not lint */
     40  1.1   ragge 
     41  1.1   ragge /*
     42  1.1   ragge  * 16 December 1992
     43  1.1   ragge  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     44  1.1   ragge  */
     45  1.1   ragge 
     46  1.1   ragge /*
     47  1.1   ragge  * ====================================================
     48  1.1   ragge  * Copyright (C) 1992 by Sun Microsystems, Inc.
     49  1.1   ragge  *
     50  1.1   ragge  * Developed at SunPro, a Sun Microsystems, Inc. business.
     51  1.1   ragge  * Permission to use, copy, modify, and distribute this
     52  1.4  simonb  * software is freely granted, provided that this notice
     53  1.1   ragge  * is preserved.
     54  1.1   ragge  * ====================================================
     55  1.1   ragge  *
     56  1.1   ragge  * ******************* WARNING ********************
     57  1.1   ragge  * This is an alpha version of SunPro's FDLIBM (Freely
     58  1.4  simonb  * Distributable Math Library) for IEEE double precision
     59  1.1   ragge  * arithmetic. FDLIBM is a basic math library written
     60  1.4  simonb  * in C that runs on machines that conform to IEEE
     61  1.4  simonb  * Standard 754/854. This alpha version is distributed
     62  1.4  simonb  * for testing purpose. Those who use this software
     63  1.4  simonb  * should report any bugs to
     64  1.1   ragge  *
     65  1.1   ragge  *		fdlibm-comments (at) sunpro.eng.sun.com
     66  1.1   ragge  *
     67  1.1   ragge  * -- K.C. Ng, Oct 12, 1992
     68  1.1   ragge  * ************************************************
     69  1.1   ragge  */
     70  1.1   ragge 
     71  1.1   ragge /* double j1(double x), y1(double x)
     72  1.1   ragge  * Bessel function of the first and second kinds of order zero.
     73  1.1   ragge  * Method -- j1(x):
     74  1.1   ragge  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
     75  1.1   ragge  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
     76  1.1   ragge  *	   for x in (0,2)
     77  1.1   ragge  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
     78  1.1   ragge  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
     79  1.1   ragge  *	   for x in (2,inf)
     80  1.1   ragge  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
     81  1.1   ragge  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
     82  1.1   ragge  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
     83  1.1   ragge  *	   as follows:
     84  1.1   ragge  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
     85  1.1   ragge  *			=  1/sqrt(2) * (sin(x) - cos(x))
     86  1.1   ragge  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
     87  1.1   ragge  *			= -1/sqrt(2) * (sin(x) + cos(x))
     88  1.1   ragge  * 	   (To avoid cancellation, use
     89  1.1   ragge  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     90  1.1   ragge  * 	    to compute the worse one.)
     91  1.4  simonb  *
     92  1.1   ragge  *	3 Special cases
     93  1.1   ragge  *		j1(nan)= nan
     94  1.1   ragge  *		j1(0) = 0
     95  1.1   ragge  *		j1(inf) = 0
     96  1.4  simonb  *
     97  1.1   ragge  * Method -- y1(x):
     98  1.4  simonb  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
     99  1.1   ragge  *	2. For x<2.
    100  1.4  simonb  *	   Since
    101  1.1   ragge  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
    102  1.1   ragge  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
    103  1.1   ragge  *	   We use the following function to approximate y1,
    104  1.1   ragge  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
    105  1.1   ragge  *	   where for x in [0,2] (abs err less than 2**-65.89)
    106  1.1   ragge  *		U(z) = u0 + u1*z + ... + u4*z^4
    107  1.1   ragge  *		V(z) = 1  + v1*z + ... + v5*z^5
    108  1.1   ragge  *	   Note: For tiny x, 1/x dominate y1 and hence
    109  1.1   ragge  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
    110  1.1   ragge  *	3. For x>=2.
    111  1.1   ragge  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
    112  1.1   ragge  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
    113  1.1   ragge  *	   by method mentioned above.
    114  1.1   ragge  */
    115  1.1   ragge 
    116  1.2   ragge #include "mathimpl.h"
    117  1.1   ragge #include <float.h>
    118  1.1   ragge #include <errno.h>
    119  1.1   ragge 
    120  1.3    matt #if defined(__vax__) || defined(tahoe)
    121  1.1   ragge #define _IEEE	0
    122  1.1   ragge #else
    123  1.1   ragge #define _IEEE	1
    124  1.1   ragge #define infnan(x) (0.0)
    125  1.1   ragge #endif
    126  1.1   ragge 
    127  1.5    matt static double pone (double), qone (double);
    128  1.1   ragge 
    129  1.5    matt static const double
    130  1.1   ragge huge    = 1e300,
    131  1.1   ragge zero    = 0.0,
    132  1.1   ragge one	= 1.0,
    133  1.1   ragge invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    134  1.1   ragge tpi	= 0.636619772367581343075535053490057448,
    135  1.1   ragge 
    136  1.1   ragge 	/* R0/S0 on [0,2] */
    137  1.1   ragge r00 =  -6.250000000000000020842322918309200910191e-0002,
    138  1.1   ragge r01 =   1.407056669551897148204830386691427791200e-0003,
    139  1.1   ragge r02 =  -1.599556310840356073980727783817809847071e-0005,
    140  1.1   ragge r03 =   4.967279996095844750387702652791615403527e-0008,
    141  1.1   ragge s01 =   1.915375995383634614394860200531091839635e-0002,
    142  1.1   ragge s02 =   1.859467855886309024045655476348872850396e-0004,
    143  1.1   ragge s03 =   1.177184640426236767593432585906758230822e-0006,
    144  1.1   ragge s04 =   5.046362570762170559046714468225101016915e-0009,
    145  1.1   ragge s05 =   1.235422744261379203512624973117299248281e-0011;
    146  1.1   ragge 
    147  1.1   ragge #define two_129	6.80564733841876926e+038	/* 2^129 */
    148  1.1   ragge #define two_m54	5.55111512312578270e-017	/* 2^-54 */
    149  1.5    matt 
    150  1.5    matt double
    151  1.5    matt j1(double x)
    152  1.1   ragge {
    153  1.1   ragge 	double z, s,c,ss,cc,r,u,v,y;
    154  1.1   ragge 	y = fabs(x);
    155  1.3    matt 	if (!finite(x)) {		/* Inf or NaN */
    156  1.1   ragge 		if (_IEEE && x != x)
    157  1.1   ragge 			return(x);
    158  1.1   ragge 		else
    159  1.1   ragge 			return (copysign(x, zero));
    160  1.3    matt 	}
    161  1.1   ragge 	y = fabs(x);
    162  1.5    matt 	if (y >= 2) {			/* |x| >= 2.0 */
    163  1.1   ragge 		s = sin(y);
    164  1.1   ragge 		c = cos(y);
    165  1.1   ragge 		ss = -s-c;
    166  1.1   ragge 		cc = s-c;
    167  1.1   ragge 		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */
    168  1.1   ragge 		    z = cos(y+y);
    169  1.1   ragge 		    if ((s*c)<zero) cc = z/ss;
    170  1.1   ragge 		    else 	    ss = z/cc;
    171  1.1   ragge 		}
    172  1.1   ragge 	/*
    173  1.1   ragge 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
    174  1.1   ragge 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
    175  1.1   ragge 	 */
    176  1.3    matt #if !defined(__vax__) && !defined(tahoe)
    177  1.1   ragge 		if (y > two_129)	 /* x > 2^129 */
    178  1.1   ragge 			z = (invsqrtpi*cc)/sqrt(y);
    179  1.1   ragge 		else
    180  1.3    matt #endif /* defined(__vax__) || defined(tahoe) */
    181  1.1   ragge 		{
    182  1.1   ragge 		    u = pone(y); v = qone(y);
    183  1.1   ragge 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
    184  1.1   ragge 		}
    185  1.1   ragge 		if (x < 0) return -z;
    186  1.1   ragge 		else  	 return  z;
    187  1.1   ragge 	}
    188  1.1   ragge 	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */
    189  1.1   ragge 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
    190  1.1   ragge 	}
    191  1.1   ragge 	z = x*x;
    192  1.1   ragge 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
    193  1.1   ragge 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
    194  1.1   ragge 	r *= x;
    195  1.1   ragge 	return (x*0.5+r/s);
    196  1.1   ragge }
    197  1.1   ragge 
    198  1.5    matt static const double u0[5] = {
    199  1.1   ragge   -1.960570906462389484206891092512047539632e-0001,
    200  1.1   ragge    5.044387166398112572026169863174882070274e-0002,
    201  1.1   ragge   -1.912568958757635383926261729464141209569e-0003,
    202  1.1   ragge    2.352526005616105109577368905595045204577e-0005,
    203  1.1   ragge    -9.190991580398788465315411784276789663849e-0008,
    204  1.1   ragge };
    205  1.5    matt static const double v0[5] = {
    206  1.1   ragge    1.991673182366499064031901734535479833387e-0002,
    207  1.1   ragge    2.025525810251351806268483867032781294682e-0004,
    208  1.1   ragge    1.356088010975162198085369545564475416398e-0006,
    209  1.1   ragge    6.227414523646214811803898435084697863445e-0009,
    210  1.1   ragge    1.665592462079920695971450872592458916421e-0011,
    211  1.1   ragge };
    212  1.1   ragge 
    213  1.5    matt double
    214  1.5    matt y1(double x)
    215  1.1   ragge {
    216  1.1   ragge 	double z, s, c, ss, cc, u, v;
    217  1.1   ragge     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
    218  1.3    matt 	if (!finite(x)) {
    219  1.1   ragge 		if (!_IEEE) return (infnan(EDOM));
    220  1.1   ragge 		else if (x < 0)
    221  1.1   ragge 			return(zero/zero);
    222  1.1   ragge 		else if (x > 0)
    223  1.1   ragge 			return (0);
    224  1.1   ragge 		else
    225  1.1   ragge 			return(x);
    226  1.3    matt 	}
    227  1.1   ragge 	if (x <= 0) {
    228  1.1   ragge 		if (_IEEE && x == 0) return -one/zero;
    229  1.1   ragge 		else if(x == 0) return(infnan(-ERANGE));
    230  1.1   ragge 		else if(_IEEE) return (zero/zero);
    231  1.1   ragge 		else return(infnan(EDOM));
    232  1.1   ragge 	}
    233  1.5    matt         if (x >= 2) {			 /* |x| >= 2.0 */
    234  1.1   ragge                 s = sin(x);
    235  1.1   ragge                 c = cos(x);
    236  1.1   ragge                 ss = -s-c;
    237  1.1   ragge                 cc = s-c;
    238  1.5    matt 		if (x < .5 * DBL_MAX) {	/* make sure x+x not overflow */
    239  1.1   ragge                     z = cos(x+x);
    240  1.1   ragge                     if ((s*c)>zero) cc = z/ss;
    241  1.1   ragge                     else            ss = z/cc;
    242  1.1   ragge                 }
    243  1.1   ragge         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    244  1.1   ragge          * where x0 = x-3pi/4
    245  1.1   ragge          *      Better formula:
    246  1.1   ragge          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    247  1.1   ragge          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    248  1.1   ragge          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    249  1.1   ragge          *                      = -1/sqrt(2) * (cos(x) + sin(x))
    250  1.1   ragge          * To avoid cancellation, use
    251  1.1   ragge          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    252  1.1   ragge          * to compute the worse one.
    253  1.1   ragge          */
    254  1.5    matt                 if (_IEEE && x>two_129) {
    255  1.1   ragge 			z = (invsqrtpi*ss)/sqrt(x);
    256  1.5    matt                 } else {
    257  1.1   ragge                     u = pone(x); v = qone(x);
    258  1.1   ragge                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    259  1.1   ragge                 }
    260  1.1   ragge                 return z;
    261  1.4  simonb         }
    262  1.1   ragge         if (x <= two_m54) {    /* x < 2**-54 */
    263  1.1   ragge             return (-tpi/x);
    264  1.4  simonb         }
    265  1.1   ragge         z = x*x;
    266  1.1   ragge         u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
    267  1.1   ragge         v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
    268  1.1   ragge         return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
    269  1.1   ragge }
    270  1.1   ragge 
    271  1.1   ragge /* For x >= 8, the asymptotic expansions of pone is
    272  1.1   ragge  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
    273  1.1   ragge  * We approximate pone by
    274  1.1   ragge  * 	pone(x) = 1 + (R/S)
    275  1.1   ragge  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    276  1.1   ragge  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    277  1.1   ragge  * and
    278  1.1   ragge  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
    279  1.1   ragge  */
    280  1.1   ragge 
    281  1.5    matt static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    282  1.1   ragge    0.0,
    283  1.1   ragge    1.171874999999886486643746274751925399540e-0001,
    284  1.1   ragge    1.323948065930735690925827997575471527252e+0001,
    285  1.1   ragge    4.120518543073785433325860184116512799375e+0002,
    286  1.1   ragge    3.874745389139605254931106878336700275601e+0003,
    287  1.1   ragge    7.914479540318917214253998253147871806507e+0003,
    288  1.1   ragge };
    289  1.5    matt static const double ps8[5] = {
    290  1.1   ragge    1.142073703756784104235066368252692471887e+0002,
    291  1.1   ragge    3.650930834208534511135396060708677099382e+0003,
    292  1.1   ragge    3.695620602690334708579444954937638371808e+0004,
    293  1.1   ragge    9.760279359349508334916300080109196824151e+0004,
    294  1.1   ragge    3.080427206278887984185421142572315054499e+0004,
    295  1.1   ragge };
    296  1.1   ragge 
    297  1.5    matt static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    298  1.1   ragge    1.319905195562435287967533851581013807103e-0011,
    299  1.1   ragge    1.171874931906140985709584817065144884218e-0001,
    300  1.1   ragge    6.802751278684328781830052995333841452280e+0000,
    301  1.1   ragge    1.083081829901891089952869437126160568246e+0002,
    302  1.1   ragge    5.176361395331997166796512844100442096318e+0002,
    303  1.1   ragge    5.287152013633375676874794230748055786553e+0002,
    304  1.1   ragge };
    305  1.5    matt static const double ps5[5] = {
    306  1.1   ragge    5.928059872211313557747989128353699746120e+0001,
    307  1.1   ragge    9.914014187336144114070148769222018425781e+0002,
    308  1.1   ragge    5.353266952914879348427003712029704477451e+0003,
    309  1.1   ragge    7.844690317495512717451367787640014588422e+0003,
    310  1.1   ragge    1.504046888103610723953792002716816255382e+0003,
    311  1.1   ragge };
    312  1.1   ragge 
    313  1.5    matt static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    314  1.1   ragge    3.025039161373736032825049903408701962756e-0009,
    315  1.1   ragge    1.171868655672535980750284752227495879921e-0001,
    316  1.1   ragge    3.932977500333156527232725812363183251138e+0000,
    317  1.1   ragge    3.511940355916369600741054592597098912682e+0001,
    318  1.1   ragge    9.105501107507812029367749771053045219094e+0001,
    319  1.1   ragge    4.855906851973649494139275085628195457113e+0001,
    320  1.1   ragge };
    321  1.5    matt static const double ps3[5] = {
    322  1.1   ragge    3.479130950012515114598605916318694946754e+0001,
    323  1.1   ragge    3.367624587478257581844639171605788622549e+0002,
    324  1.1   ragge    1.046871399757751279180649307467612538415e+0003,
    325  1.1   ragge    8.908113463982564638443204408234739237639e+0002,
    326  1.1   ragge    1.037879324396392739952487012284401031859e+0002,
    327  1.1   ragge };
    328  1.1   ragge 
    329  1.5    matt static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    330  1.1   ragge    1.077108301068737449490056513753865482831e-0007,
    331  1.1   ragge    1.171762194626833490512746348050035171545e-0001,
    332  1.1   ragge    2.368514966676087902251125130227221462134e+0000,
    333  1.1   ragge    1.224261091482612280835153832574115951447e+0001,
    334  1.1   ragge    1.769397112716877301904532320376586509782e+0001,
    335  1.1   ragge    5.073523125888185399030700509321145995160e+0000,
    336  1.1   ragge };
    337  1.5    matt static const double ps2[5] = {
    338  1.1   ragge    2.143648593638214170243114358933327983793e+0001,
    339  1.1   ragge    1.252902271684027493309211410842525120355e+0002,
    340  1.1   ragge    2.322764690571628159027850677565128301361e+0002,
    341  1.1   ragge    1.176793732871470939654351793502076106651e+0002,
    342  1.1   ragge    8.364638933716182492500902115164881195742e+0000,
    343  1.1   ragge };
    344  1.1   ragge 
    345  1.5    matt static double
    346  1.5    matt pone(double x)
    347  1.1   ragge {
    348  1.5    matt 	const double *p,*q;
    349  1.5    matt 	double z,r,s;
    350  1.1   ragge 	if (x >= 8.0) 			   {p = pr8; q= ps8;}
    351  1.1   ragge 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
    352  1.1   ragge 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
    353  1.1   ragge 	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;}
    354  1.1   ragge 	z = one/(x*x);
    355  1.1   ragge 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    356  1.1   ragge 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    357  1.1   ragge 	return (one + r/s);
    358  1.1   ragge }
    359  1.4  simonb 
    360  1.1   ragge 
    361  1.1   ragge /* For x >= 8, the asymptotic expansions of qone is
    362  1.1   ragge  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
    363  1.1   ragge  * We approximate pone by
    364  1.1   ragge  * 	qone(x) = s*(0.375 + (R/S))
    365  1.1   ragge  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    366  1.1   ragge  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
    367  1.1   ragge  * and
    368  1.1   ragge  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
    369  1.1   ragge  */
    370  1.1   ragge 
    371  1.5    matt static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    372  1.1   ragge    0.0,
    373  1.1   ragge   -1.025390624999927207385863635575804210817e-0001,
    374  1.1   ragge   -1.627175345445899724355852152103771510209e+0001,
    375  1.1   ragge   -7.596017225139501519843072766973047217159e+0002,
    376  1.1   ragge   -1.184980667024295901645301570813228628541e+0004,
    377  1.1   ragge   -4.843851242857503225866761992518949647041e+0004,
    378  1.1   ragge };
    379  1.5    matt static const double qs8[6] = {
    380  1.1   ragge    1.613953697007229231029079421446916397904e+0002,
    381  1.1   ragge    7.825385999233484705298782500926834217525e+0003,
    382  1.1   ragge    1.338753362872495800748094112937868089032e+0005,
    383  1.1   ragge    7.196577236832409151461363171617204036929e+0005,
    384  1.1   ragge    6.666012326177764020898162762642290294625e+0005,
    385  1.1   ragge   -2.944902643038346618211973470809456636830e+0005,
    386  1.1   ragge };
    387  1.1   ragge 
    388  1.5    matt static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    389  1.1   ragge   -2.089799311417640889742251585097264715678e-0011,
    390  1.1   ragge   -1.025390502413754195402736294609692303708e-0001,
    391  1.1   ragge   -8.056448281239359746193011295417408828404e+0000,
    392  1.1   ragge   -1.836696074748883785606784430098756513222e+0002,
    393  1.1   ragge   -1.373193760655081612991329358017247355921e+0003,
    394  1.1   ragge   -2.612444404532156676659706427295870995743e+0003,
    395  1.1   ragge };
    396  1.5    matt static const double qs5[6] = {
    397  1.1   ragge    8.127655013843357670881559763225310973118e+0001,
    398  1.1   ragge    1.991798734604859732508048816860471197220e+0003,
    399  1.1   ragge    1.746848519249089131627491835267411777366e+0004,
    400  1.1   ragge    4.985142709103522808438758919150738000353e+0004,
    401  1.1   ragge    2.794807516389181249227113445299675335543e+0004,
    402  1.1   ragge   -4.719183547951285076111596613593553911065e+0003,
    403  1.1   ragge };
    404  1.1   ragge 
    405  1.5    matt static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    406  1.1   ragge   -5.078312264617665927595954813341838734288e-0009,
    407  1.1   ragge   -1.025378298208370901410560259001035577681e-0001,
    408  1.1   ragge   -4.610115811394734131557983832055607679242e+0000,
    409  1.1   ragge   -5.784722165627836421815348508816936196402e+0001,
    410  1.1   ragge   -2.282445407376317023842545937526967035712e+0002,
    411  1.1   ragge   -2.192101284789093123936441805496580237676e+0002,
    412  1.1   ragge };
    413  1.5    matt static const double qs3[6] = {
    414  1.1   ragge    4.766515503237295155392317984171640809318e+0001,
    415  1.1   ragge    6.738651126766996691330687210949984203167e+0002,
    416  1.1   ragge    3.380152866795263466426219644231687474174e+0003,
    417  1.1   ragge    5.547729097207227642358288160210745890345e+0003,
    418  1.1   ragge    1.903119193388108072238947732674639066045e+0003,
    419  1.1   ragge   -1.352011914443073322978097159157678748982e+0002,
    420  1.1   ragge };
    421  1.1   ragge 
    422  1.5    matt static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    423  1.1   ragge   -1.783817275109588656126772316921194887979e-0007,
    424  1.1   ragge   -1.025170426079855506812435356168903694433e-0001,
    425  1.1   ragge   -2.752205682781874520495702498875020485552e+0000,
    426  1.1   ragge   -1.966361626437037351076756351268110418862e+0001,
    427  1.1   ragge   -4.232531333728305108194363846333841480336e+0001,
    428  1.1   ragge   -2.137192117037040574661406572497288723430e+0001,
    429  1.1   ragge };
    430  1.5    matt static const double qs2[6] = {
    431  1.1   ragge    2.953336290605238495019307530224241335502e+0001,
    432  1.1   ragge    2.529815499821905343698811319455305266409e+0002,
    433  1.1   ragge    7.575028348686454070022561120722815892346e+0002,
    434  1.1   ragge    7.393932053204672479746835719678434981599e+0002,
    435  1.1   ragge    1.559490033366661142496448853793707126179e+0002,
    436  1.1   ragge   -4.959498988226281813825263003231704397158e+0000,
    437  1.1   ragge };
    438  1.1   ragge 
    439  1.5    matt static double
    440  1.5    matt qone(double x)
    441  1.1   ragge {
    442  1.5    matt 	const double *p,*q;
    443  1.5    matt 	double s,r,z;
    444  1.1   ragge 	if (x >= 8.0)			   {p = qr8; q= qs8;}
    445  1.1   ragge 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
    446  1.1   ragge 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
    447  1.1   ragge 	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;}
    448  1.1   ragge 	z = one/(x*x);
    449  1.1   ragge 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    450  1.1   ragge 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    451  1.1   ragge 	return (.375 + r/s)/x;
    452  1.1   ragge }
    453