n_j1.c revision 1.1 1 /* $NetBSD: n_j1.c,v 1.1 1995/10/10 23:36:53 ragge Exp $ */
2 /*-
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
37 #endif /* not lint */
38
39 /*
40 * 16 December 1992
41 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
42 */
43
44 /*
45 * ====================================================
46 * Copyright (C) 1992 by Sun Microsystems, Inc.
47 *
48 * Developed at SunPro, a Sun Microsystems, Inc. business.
49 * Permission to use, copy, modify, and distribute this
50 * software is freely granted, provided that this notice
51 * is preserved.
52 * ====================================================
53 *
54 * ******************* WARNING ********************
55 * This is an alpha version of SunPro's FDLIBM (Freely
56 * Distributable Math Library) for IEEE double precision
57 * arithmetic. FDLIBM is a basic math library written
58 * in C that runs on machines that conform to IEEE
59 * Standard 754/854. This alpha version is distributed
60 * for testing purpose. Those who use this software
61 * should report any bugs to
62 *
63 * fdlibm-comments (at) sunpro.eng.sun.com
64 *
65 * -- K.C. Ng, Oct 12, 1992
66 * ************************************************
67 */
68
69 /* double j1(double x), y1(double x)
70 * Bessel function of the first and second kinds of order zero.
71 * Method -- j1(x):
72 * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
73 * 2. Reduce x to |x| since j1(x)=-j1(-x), and
74 * for x in (0,2)
75 * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
76 * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
77 * for x in (2,inf)
78 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
79 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
80 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
81 * as follows:
82 * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
83 * = 1/sqrt(2) * (sin(x) - cos(x))
84 * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
85 * = -1/sqrt(2) * (sin(x) + cos(x))
86 * (To avoid cancellation, use
87 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
88 * to compute the worse one.)
89 *
90 * 3 Special cases
91 * j1(nan)= nan
92 * j1(0) = 0
93 * j1(inf) = 0
94 *
95 * Method -- y1(x):
96 * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
97 * 2. For x<2.
98 * Since
99 * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
100 * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
101 * We use the following function to approximate y1,
102 * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
103 * where for x in [0,2] (abs err less than 2**-65.89)
104 * U(z) = u0 + u1*z + ... + u4*z^4
105 * V(z) = 1 + v1*z + ... + v5*z^5
106 * Note: For tiny x, 1/x dominate y1 and hence
107 * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
108 * 3. For x>=2.
109 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
110 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
111 * by method mentioned above.
112 */
113
114 #include <math.h>
115 #include <float.h>
116 #include <errno.h>
117
118 #if defined(vax) || defined(tahoe)
119 #define _IEEE 0
120 #else
121 #define _IEEE 1
122 #define infnan(x) (0.0)
123 #endif
124
125 static double pone(), qone();
126
127 static double
128 huge = 1e300,
129 zero = 0.0,
130 one = 1.0,
131 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
132 tpi = 0.636619772367581343075535053490057448,
133
134 /* R0/S0 on [0,2] */
135 r00 = -6.250000000000000020842322918309200910191e-0002,
136 r01 = 1.407056669551897148204830386691427791200e-0003,
137 r02 = -1.599556310840356073980727783817809847071e-0005,
138 r03 = 4.967279996095844750387702652791615403527e-0008,
139 s01 = 1.915375995383634614394860200531091839635e-0002,
140 s02 = 1.859467855886309024045655476348872850396e-0004,
141 s03 = 1.177184640426236767593432585906758230822e-0006,
142 s04 = 5.046362570762170559046714468225101016915e-0009,
143 s05 = 1.235422744261379203512624973117299248281e-0011;
144
145 #define two_129 6.80564733841876926e+038 /* 2^129 */
146 #define two_m54 5.55111512312578270e-017 /* 2^-54 */
147 double j1(x)
148 double x;
149 {
150 double z, s,c,ss,cc,r,u,v,y;
151 y = fabs(x);
152 if (!finite(x)) /* Inf or NaN */
153 if (_IEEE && x != x)
154 return(x);
155 else
156 return (copysign(x, zero));
157 y = fabs(x);
158 if (y >= 2) /* |x| >= 2.0 */
159 {
160 s = sin(y);
161 c = cos(y);
162 ss = -s-c;
163 cc = s-c;
164 if (y < .5*DBL_MAX) { /* make sure y+y not overflow */
165 z = cos(y+y);
166 if ((s*c)<zero) cc = z/ss;
167 else ss = z/cc;
168 }
169 /*
170 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
171 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
172 */
173 #if !defined(vax) && !defined(tahoe)
174 if (y > two_129) /* x > 2^129 */
175 z = (invsqrtpi*cc)/sqrt(y);
176 else
177 #endif /* defined(vax) || defined(tahoe) */
178 {
179 u = pone(y); v = qone(y);
180 z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
181 }
182 if (x < 0) return -z;
183 else return z;
184 }
185 if (y < 7.450580596923828125e-009) { /* |x|<2**-27 */
186 if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
187 }
188 z = x*x;
189 r = z*(r00+z*(r01+z*(r02+z*r03)));
190 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
191 r *= x;
192 return (x*0.5+r/s);
193 }
194
195 static double u0[5] = {
196 -1.960570906462389484206891092512047539632e-0001,
197 5.044387166398112572026169863174882070274e-0002,
198 -1.912568958757635383926261729464141209569e-0003,
199 2.352526005616105109577368905595045204577e-0005,
200 -9.190991580398788465315411784276789663849e-0008,
201 };
202 static double v0[5] = {
203 1.991673182366499064031901734535479833387e-0002,
204 2.025525810251351806268483867032781294682e-0004,
205 1.356088010975162198085369545564475416398e-0006,
206 6.227414523646214811803898435084697863445e-0009,
207 1.665592462079920695971450872592458916421e-0011,
208 };
209
210 double y1(x)
211 double x;
212 {
213 double z, s, c, ss, cc, u, v;
214 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
215 if (!finite(x))
216 if (!_IEEE) return (infnan(EDOM));
217 else if (x < 0)
218 return(zero/zero);
219 else if (x > 0)
220 return (0);
221 else
222 return(x);
223 if (x <= 0) {
224 if (_IEEE && x == 0) return -one/zero;
225 else if(x == 0) return(infnan(-ERANGE));
226 else if(_IEEE) return (zero/zero);
227 else return(infnan(EDOM));
228 }
229 if (x >= 2) /* |x| >= 2.0 */
230 {
231 s = sin(x);
232 c = cos(x);
233 ss = -s-c;
234 cc = s-c;
235 if (x < .5 * DBL_MAX) /* make sure x+x not overflow */
236 {
237 z = cos(x+x);
238 if ((s*c)>zero) cc = z/ss;
239 else ss = z/cc;
240 }
241 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
242 * where x0 = x-3pi/4
243 * Better formula:
244 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
245 * = 1/sqrt(2) * (sin(x) - cos(x))
246 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
247 * = -1/sqrt(2) * (cos(x) + sin(x))
248 * To avoid cancellation, use
249 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
250 * to compute the worse one.
251 */
252 if (_IEEE && x>two_129)
253 z = (invsqrtpi*ss)/sqrt(x);
254 else {
255 u = pone(x); v = qone(x);
256 z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
257 }
258 return z;
259 }
260 if (x <= two_m54) { /* x < 2**-54 */
261 return (-tpi/x);
262 }
263 z = x*x;
264 u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
265 v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
266 return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
267 }
268
269 /* For x >= 8, the asymptotic expansions of pone is
270 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
271 * We approximate pone by
272 * pone(x) = 1 + (R/S)
273 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
274 * S = 1 + ps0*s^2 + ... + ps4*s^10
275 * and
276 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
277 */
278
279 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
280 0.0,
281 1.171874999999886486643746274751925399540e-0001,
282 1.323948065930735690925827997575471527252e+0001,
283 4.120518543073785433325860184116512799375e+0002,
284 3.874745389139605254931106878336700275601e+0003,
285 7.914479540318917214253998253147871806507e+0003,
286 };
287 static double ps8[5] = {
288 1.142073703756784104235066368252692471887e+0002,
289 3.650930834208534511135396060708677099382e+0003,
290 3.695620602690334708579444954937638371808e+0004,
291 9.760279359349508334916300080109196824151e+0004,
292 3.080427206278887984185421142572315054499e+0004,
293 };
294
295 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
296 1.319905195562435287967533851581013807103e-0011,
297 1.171874931906140985709584817065144884218e-0001,
298 6.802751278684328781830052995333841452280e+0000,
299 1.083081829901891089952869437126160568246e+0002,
300 5.176361395331997166796512844100442096318e+0002,
301 5.287152013633375676874794230748055786553e+0002,
302 };
303 static double ps5[5] = {
304 5.928059872211313557747989128353699746120e+0001,
305 9.914014187336144114070148769222018425781e+0002,
306 5.353266952914879348427003712029704477451e+0003,
307 7.844690317495512717451367787640014588422e+0003,
308 1.504046888103610723953792002716816255382e+0003,
309 };
310
311 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
312 3.025039161373736032825049903408701962756e-0009,
313 1.171868655672535980750284752227495879921e-0001,
314 3.932977500333156527232725812363183251138e+0000,
315 3.511940355916369600741054592597098912682e+0001,
316 9.105501107507812029367749771053045219094e+0001,
317 4.855906851973649494139275085628195457113e+0001,
318 };
319 static double ps3[5] = {
320 3.479130950012515114598605916318694946754e+0001,
321 3.367624587478257581844639171605788622549e+0002,
322 1.046871399757751279180649307467612538415e+0003,
323 8.908113463982564638443204408234739237639e+0002,
324 1.037879324396392739952487012284401031859e+0002,
325 };
326
327 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
328 1.077108301068737449490056513753865482831e-0007,
329 1.171762194626833490512746348050035171545e-0001,
330 2.368514966676087902251125130227221462134e+0000,
331 1.224261091482612280835153832574115951447e+0001,
332 1.769397112716877301904532320376586509782e+0001,
333 5.073523125888185399030700509321145995160e+0000,
334 };
335 static double ps2[5] = {
336 2.143648593638214170243114358933327983793e+0001,
337 1.252902271684027493309211410842525120355e+0002,
338 2.322764690571628159027850677565128301361e+0002,
339 1.176793732871470939654351793502076106651e+0002,
340 8.364638933716182492500902115164881195742e+0000,
341 };
342
343 static double pone(x)
344 double x;
345 {
346 double *p,*q,z,r,s;
347 if (x >= 8.0) {p = pr8; q= ps8;}
348 else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
349 else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
350 else /* if (x >= 2.0) */ {p = pr2; q= ps2;}
351 z = one/(x*x);
352 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
353 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
354 return (one + r/s);
355 }
356
357
358 /* For x >= 8, the asymptotic expansions of qone is
359 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
360 * We approximate pone by
361 * qone(x) = s*(0.375 + (R/S))
362 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
363 * S = 1 + qs1*s^2 + ... + qs6*s^12
364 * and
365 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
366 */
367
368 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
369 0.0,
370 -1.025390624999927207385863635575804210817e-0001,
371 -1.627175345445899724355852152103771510209e+0001,
372 -7.596017225139501519843072766973047217159e+0002,
373 -1.184980667024295901645301570813228628541e+0004,
374 -4.843851242857503225866761992518949647041e+0004,
375 };
376 static double qs8[6] = {
377 1.613953697007229231029079421446916397904e+0002,
378 7.825385999233484705298782500926834217525e+0003,
379 1.338753362872495800748094112937868089032e+0005,
380 7.196577236832409151461363171617204036929e+0005,
381 6.666012326177764020898162762642290294625e+0005,
382 -2.944902643038346618211973470809456636830e+0005,
383 };
384
385 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
386 -2.089799311417640889742251585097264715678e-0011,
387 -1.025390502413754195402736294609692303708e-0001,
388 -8.056448281239359746193011295417408828404e+0000,
389 -1.836696074748883785606784430098756513222e+0002,
390 -1.373193760655081612991329358017247355921e+0003,
391 -2.612444404532156676659706427295870995743e+0003,
392 };
393 static double qs5[6] = {
394 8.127655013843357670881559763225310973118e+0001,
395 1.991798734604859732508048816860471197220e+0003,
396 1.746848519249089131627491835267411777366e+0004,
397 4.985142709103522808438758919150738000353e+0004,
398 2.794807516389181249227113445299675335543e+0004,
399 -4.719183547951285076111596613593553911065e+0003,
400 };
401
402 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
403 -5.078312264617665927595954813341838734288e-0009,
404 -1.025378298208370901410560259001035577681e-0001,
405 -4.610115811394734131557983832055607679242e+0000,
406 -5.784722165627836421815348508816936196402e+0001,
407 -2.282445407376317023842545937526967035712e+0002,
408 -2.192101284789093123936441805496580237676e+0002,
409 };
410 static double qs3[6] = {
411 4.766515503237295155392317984171640809318e+0001,
412 6.738651126766996691330687210949984203167e+0002,
413 3.380152866795263466426219644231687474174e+0003,
414 5.547729097207227642358288160210745890345e+0003,
415 1.903119193388108072238947732674639066045e+0003,
416 -1.352011914443073322978097159157678748982e+0002,
417 };
418
419 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
420 -1.783817275109588656126772316921194887979e-0007,
421 -1.025170426079855506812435356168903694433e-0001,
422 -2.752205682781874520495702498875020485552e+0000,
423 -1.966361626437037351076756351268110418862e+0001,
424 -4.232531333728305108194363846333841480336e+0001,
425 -2.137192117037040574661406572497288723430e+0001,
426 };
427 static double qs2[6] = {
428 2.953336290605238495019307530224241335502e+0001,
429 2.529815499821905343698811319455305266409e+0002,
430 7.575028348686454070022561120722815892346e+0002,
431 7.393932053204672479746835719678434981599e+0002,
432 1.559490033366661142496448853793707126179e+0002,
433 -4.959498988226281813825263003231704397158e+0000,
434 };
435
436 static double qone(x)
437 double x;
438 {
439 double *p,*q, s,r,z;
440 if (x >= 8.0) {p = qr8; q= qs8;}
441 else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
442 else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
443 else /* if (x >= 2.0) */ {p = qr2; q= qs2;}
444 z = one/(x*x);
445 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
446 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
447 return (.375 + r/s)/x;
448 }
449