Home | History | Annotate | Line # | Download | only in noieee_src
n_j1.c revision 1.1
      1 /*	$NetBSD: n_j1.c,v 1.1 1995/10/10 23:36:53 ragge Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";
     37 #endif /* not lint */
     38 
     39 /*
     40  * 16 December 1992
     41  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     42  */
     43 
     44 /*
     45  * ====================================================
     46  * Copyright (C) 1992 by Sun Microsystems, Inc.
     47  *
     48  * Developed at SunPro, a Sun Microsystems, Inc. business.
     49  * Permission to use, copy, modify, and distribute this
     50  * software is freely granted, provided that this notice
     51  * is preserved.
     52  * ====================================================
     53  *
     54  * ******************* WARNING ********************
     55  * This is an alpha version of SunPro's FDLIBM (Freely
     56  * Distributable Math Library) for IEEE double precision
     57  * arithmetic. FDLIBM is a basic math library written
     58  * in C that runs on machines that conform to IEEE
     59  * Standard 754/854. This alpha version is distributed
     60  * for testing purpose. Those who use this software
     61  * should report any bugs to
     62  *
     63  *		fdlibm-comments (at) sunpro.eng.sun.com
     64  *
     65  * -- K.C. Ng, Oct 12, 1992
     66  * ************************************************
     67  */
     68 
     69 /* double j1(double x), y1(double x)
     70  * Bessel function of the first and second kinds of order zero.
     71  * Method -- j1(x):
     72  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
     73  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
     74  *	   for x in (0,2)
     75  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
     76  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
     77  *	   for x in (2,inf)
     78  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
     79  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
     80  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
     81  *	   as follows:
     82  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
     83  *			=  1/sqrt(2) * (sin(x) - cos(x))
     84  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
     85  *			= -1/sqrt(2) * (sin(x) + cos(x))
     86  * 	   (To avoid cancellation, use
     87  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     88  * 	    to compute the worse one.)
     89  *
     90  *	3 Special cases
     91  *		j1(nan)= nan
     92  *		j1(0) = 0
     93  *		j1(inf) = 0
     94  *
     95  * Method -- y1(x):
     96  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
     97  *	2. For x<2.
     98  *	   Since
     99  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
    100  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
    101  *	   We use the following function to approximate y1,
    102  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
    103  *	   where for x in [0,2] (abs err less than 2**-65.89)
    104  *		U(z) = u0 + u1*z + ... + u4*z^4
    105  *		V(z) = 1  + v1*z + ... + v5*z^5
    106  *	   Note: For tiny x, 1/x dominate y1 and hence
    107  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
    108  *	3. For x>=2.
    109  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
    110  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
    111  *	   by method mentioned above.
    112  */
    113 
    114 #include <math.h>
    115 #include <float.h>
    116 #include <errno.h>
    117 
    118 #if defined(vax) || defined(tahoe)
    119 #define _IEEE	0
    120 #else
    121 #define _IEEE	1
    122 #define infnan(x) (0.0)
    123 #endif
    124 
    125 static double pone(), qone();
    126 
    127 static double
    128 huge    = 1e300,
    129 zero    = 0.0,
    130 one	= 1.0,
    131 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    132 tpi	= 0.636619772367581343075535053490057448,
    133 
    134 	/* R0/S0 on [0,2] */
    135 r00 =  -6.250000000000000020842322918309200910191e-0002,
    136 r01 =   1.407056669551897148204830386691427791200e-0003,
    137 r02 =  -1.599556310840356073980727783817809847071e-0005,
    138 r03 =   4.967279996095844750387702652791615403527e-0008,
    139 s01 =   1.915375995383634614394860200531091839635e-0002,
    140 s02 =   1.859467855886309024045655476348872850396e-0004,
    141 s03 =   1.177184640426236767593432585906758230822e-0006,
    142 s04 =   5.046362570762170559046714468225101016915e-0009,
    143 s05 =   1.235422744261379203512624973117299248281e-0011;
    144 
    145 #define two_129	6.80564733841876926e+038	/* 2^129 */
    146 #define two_m54	5.55111512312578270e-017	/* 2^-54 */
    147 double j1(x)
    148 	double x;
    149 {
    150 	double z, s,c,ss,cc,r,u,v,y;
    151 	y = fabs(x);
    152 	if (!finite(x))			/* Inf or NaN */
    153 		if (_IEEE && x != x)
    154 			return(x);
    155 		else
    156 			return (copysign(x, zero));
    157 	y = fabs(x);
    158 	if (y >= 2)			/* |x| >= 2.0 */
    159 	{
    160 		s = sin(y);
    161 		c = cos(y);
    162 		ss = -s-c;
    163 		cc = s-c;
    164 		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */
    165 		    z = cos(y+y);
    166 		    if ((s*c)<zero) cc = z/ss;
    167 		    else 	    ss = z/cc;
    168 		}
    169 	/*
    170 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
    171 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
    172 	 */
    173 #if !defined(vax) && !defined(tahoe)
    174 		if (y > two_129)	 /* x > 2^129 */
    175 			z = (invsqrtpi*cc)/sqrt(y);
    176 		else
    177 #endif /* defined(vax) || defined(tahoe) */
    178 		{
    179 		    u = pone(y); v = qone(y);
    180 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
    181 		}
    182 		if (x < 0) return -z;
    183 		else  	 return  z;
    184 	}
    185 	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */
    186 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
    187 	}
    188 	z = x*x;
    189 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
    190 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
    191 	r *= x;
    192 	return (x*0.5+r/s);
    193 }
    194 
    195 static double u0[5] = {
    196   -1.960570906462389484206891092512047539632e-0001,
    197    5.044387166398112572026169863174882070274e-0002,
    198   -1.912568958757635383926261729464141209569e-0003,
    199    2.352526005616105109577368905595045204577e-0005,
    200    -9.190991580398788465315411784276789663849e-0008,
    201 };
    202 static double v0[5] = {
    203    1.991673182366499064031901734535479833387e-0002,
    204    2.025525810251351806268483867032781294682e-0004,
    205    1.356088010975162198085369545564475416398e-0006,
    206    6.227414523646214811803898435084697863445e-0009,
    207    1.665592462079920695971450872592458916421e-0011,
    208 };
    209 
    210 double y1(x)
    211 	double x;
    212 {
    213 	double z, s, c, ss, cc, u, v;
    214     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
    215 	if (!finite(x))
    216 		if (!_IEEE) return (infnan(EDOM));
    217 		else if (x < 0)
    218 			return(zero/zero);
    219 		else if (x > 0)
    220 			return (0);
    221 		else
    222 			return(x);
    223 	if (x <= 0) {
    224 		if (_IEEE && x == 0) return -one/zero;
    225 		else if(x == 0) return(infnan(-ERANGE));
    226 		else if(_IEEE) return (zero/zero);
    227 		else return(infnan(EDOM));
    228 	}
    229         if (x >= 2)			 /* |x| >= 2.0 */
    230 	{
    231                 s = sin(x);
    232                 c = cos(x);
    233                 ss = -s-c;
    234                 cc = s-c;
    235 		if (x < .5 * DBL_MAX)	/* make sure x+x not overflow */
    236 		{
    237                     z = cos(x+x);
    238                     if ((s*c)>zero) cc = z/ss;
    239                     else            ss = z/cc;
    240                 }
    241         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    242          * where x0 = x-3pi/4
    243          *      Better formula:
    244          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    245          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    246          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    247          *                      = -1/sqrt(2) * (cos(x) + sin(x))
    248          * To avoid cancellation, use
    249          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    250          * to compute the worse one.
    251          */
    252                 if (_IEEE && x>two_129)
    253 			z = (invsqrtpi*ss)/sqrt(x);
    254                 else {
    255                     u = pone(x); v = qone(x);
    256                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    257                 }
    258                 return z;
    259         }
    260         if (x <= two_m54) {    /* x < 2**-54 */
    261             return (-tpi/x);
    262         }
    263         z = x*x;
    264         u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
    265         v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
    266         return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
    267 }
    268 
    269 /* For x >= 8, the asymptotic expansions of pone is
    270  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
    271  * We approximate pone by
    272  * 	pone(x) = 1 + (R/S)
    273  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    274  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    275  * and
    276  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
    277  */
    278 
    279 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    280    0.0,
    281    1.171874999999886486643746274751925399540e-0001,
    282    1.323948065930735690925827997575471527252e+0001,
    283    4.120518543073785433325860184116512799375e+0002,
    284    3.874745389139605254931106878336700275601e+0003,
    285    7.914479540318917214253998253147871806507e+0003,
    286 };
    287 static double ps8[5] = {
    288    1.142073703756784104235066368252692471887e+0002,
    289    3.650930834208534511135396060708677099382e+0003,
    290    3.695620602690334708579444954937638371808e+0004,
    291    9.760279359349508334916300080109196824151e+0004,
    292    3.080427206278887984185421142572315054499e+0004,
    293 };
    294 
    295 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    296    1.319905195562435287967533851581013807103e-0011,
    297    1.171874931906140985709584817065144884218e-0001,
    298    6.802751278684328781830052995333841452280e+0000,
    299    1.083081829901891089952869437126160568246e+0002,
    300    5.176361395331997166796512844100442096318e+0002,
    301    5.287152013633375676874794230748055786553e+0002,
    302 };
    303 static double ps5[5] = {
    304    5.928059872211313557747989128353699746120e+0001,
    305    9.914014187336144114070148769222018425781e+0002,
    306    5.353266952914879348427003712029704477451e+0003,
    307    7.844690317495512717451367787640014588422e+0003,
    308    1.504046888103610723953792002716816255382e+0003,
    309 };
    310 
    311 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    312    3.025039161373736032825049903408701962756e-0009,
    313    1.171868655672535980750284752227495879921e-0001,
    314    3.932977500333156527232725812363183251138e+0000,
    315    3.511940355916369600741054592597098912682e+0001,
    316    9.105501107507812029367749771053045219094e+0001,
    317    4.855906851973649494139275085628195457113e+0001,
    318 };
    319 static double ps3[5] = {
    320    3.479130950012515114598605916318694946754e+0001,
    321    3.367624587478257581844639171605788622549e+0002,
    322    1.046871399757751279180649307467612538415e+0003,
    323    8.908113463982564638443204408234739237639e+0002,
    324    1.037879324396392739952487012284401031859e+0002,
    325 };
    326 
    327 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    328    1.077108301068737449490056513753865482831e-0007,
    329    1.171762194626833490512746348050035171545e-0001,
    330    2.368514966676087902251125130227221462134e+0000,
    331    1.224261091482612280835153832574115951447e+0001,
    332    1.769397112716877301904532320376586509782e+0001,
    333    5.073523125888185399030700509321145995160e+0000,
    334 };
    335 static double ps2[5] = {
    336    2.143648593638214170243114358933327983793e+0001,
    337    1.252902271684027493309211410842525120355e+0002,
    338    2.322764690571628159027850677565128301361e+0002,
    339    1.176793732871470939654351793502076106651e+0002,
    340    8.364638933716182492500902115164881195742e+0000,
    341 };
    342 
    343 static double pone(x)
    344 	double x;
    345 {
    346 	double *p,*q,z,r,s;
    347 	if (x >= 8.0) 			   {p = pr8; q= ps8;}
    348 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
    349 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
    350 	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;}
    351 	z = one/(x*x);
    352 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    353 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    354 	return (one + r/s);
    355 }
    356 
    357 
    358 /* For x >= 8, the asymptotic expansions of qone is
    359  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
    360  * We approximate pone by
    361  * 	qone(x) = s*(0.375 + (R/S))
    362  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    363  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
    364  * and
    365  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
    366  */
    367 
    368 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    369    0.0,
    370   -1.025390624999927207385863635575804210817e-0001,
    371   -1.627175345445899724355852152103771510209e+0001,
    372   -7.596017225139501519843072766973047217159e+0002,
    373   -1.184980667024295901645301570813228628541e+0004,
    374   -4.843851242857503225866761992518949647041e+0004,
    375 };
    376 static double qs8[6] = {
    377    1.613953697007229231029079421446916397904e+0002,
    378    7.825385999233484705298782500926834217525e+0003,
    379    1.338753362872495800748094112937868089032e+0005,
    380    7.196577236832409151461363171617204036929e+0005,
    381    6.666012326177764020898162762642290294625e+0005,
    382   -2.944902643038346618211973470809456636830e+0005,
    383 };
    384 
    385 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    386   -2.089799311417640889742251585097264715678e-0011,
    387   -1.025390502413754195402736294609692303708e-0001,
    388   -8.056448281239359746193011295417408828404e+0000,
    389   -1.836696074748883785606784430098756513222e+0002,
    390   -1.373193760655081612991329358017247355921e+0003,
    391   -2.612444404532156676659706427295870995743e+0003,
    392 };
    393 static double qs5[6] = {
    394    8.127655013843357670881559763225310973118e+0001,
    395    1.991798734604859732508048816860471197220e+0003,
    396    1.746848519249089131627491835267411777366e+0004,
    397    4.985142709103522808438758919150738000353e+0004,
    398    2.794807516389181249227113445299675335543e+0004,
    399   -4.719183547951285076111596613593553911065e+0003,
    400 };
    401 
    402 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    403   -5.078312264617665927595954813341838734288e-0009,
    404   -1.025378298208370901410560259001035577681e-0001,
    405   -4.610115811394734131557983832055607679242e+0000,
    406   -5.784722165627836421815348508816936196402e+0001,
    407   -2.282445407376317023842545937526967035712e+0002,
    408   -2.192101284789093123936441805496580237676e+0002,
    409 };
    410 static double qs3[6] = {
    411    4.766515503237295155392317984171640809318e+0001,
    412    6.738651126766996691330687210949984203167e+0002,
    413    3.380152866795263466426219644231687474174e+0003,
    414    5.547729097207227642358288160210745890345e+0003,
    415    1.903119193388108072238947732674639066045e+0003,
    416   -1.352011914443073322978097159157678748982e+0002,
    417 };
    418 
    419 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    420   -1.783817275109588656126772316921194887979e-0007,
    421   -1.025170426079855506812435356168903694433e-0001,
    422   -2.752205682781874520495702498875020485552e+0000,
    423   -1.966361626437037351076756351268110418862e+0001,
    424   -4.232531333728305108194363846333841480336e+0001,
    425   -2.137192117037040574661406572497288723430e+0001,
    426 };
    427 static double qs2[6] = {
    428    2.953336290605238495019307530224241335502e+0001,
    429    2.529815499821905343698811319455305266409e+0002,
    430    7.575028348686454070022561120722815892346e+0002,
    431    7.393932053204672479746835719678434981599e+0002,
    432    1.559490033366661142496448853793707126179e+0002,
    433   -4.959498988226281813825263003231704397158e+0000,
    434 };
    435 
    436 static double qone(x)
    437 	double x;
    438 {
    439 	double *p,*q, s,r,z;
    440 	if (x >= 8.0)			   {p = qr8; q= qs8;}
    441 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
    442 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
    443 	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;}
    444 	z = one/(x*x);
    445 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    446 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    447 	return (.375 + r/s)/x;
    448 }
    449