n_j1.c revision 1.4 1 /* $NetBSD: n_j1.c,v 1.4 1999/07/02 15:37:37 simonb Exp $ */
2 /*-
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40
41 /*
42 * 16 December 1992
43 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44 */
45
46 /*
47 * ====================================================
48 * Copyright (C) 1992 by Sun Microsystems, Inc.
49 *
50 * Developed at SunPro, a Sun Microsystems, Inc. business.
51 * Permission to use, copy, modify, and distribute this
52 * software is freely granted, provided that this notice
53 * is preserved.
54 * ====================================================
55 *
56 * ******************* WARNING ********************
57 * This is an alpha version of SunPro's FDLIBM (Freely
58 * Distributable Math Library) for IEEE double precision
59 * arithmetic. FDLIBM is a basic math library written
60 * in C that runs on machines that conform to IEEE
61 * Standard 754/854. This alpha version is distributed
62 * for testing purpose. Those who use this software
63 * should report any bugs to
64 *
65 * fdlibm-comments (at) sunpro.eng.sun.com
66 *
67 * -- K.C. Ng, Oct 12, 1992
68 * ************************************************
69 */
70
71 /* double j1(double x), y1(double x)
72 * Bessel function of the first and second kinds of order zero.
73 * Method -- j1(x):
74 * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
75 * 2. Reduce x to |x| since j1(x)=-j1(-x), and
76 * for x in (0,2)
77 * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
78 * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
79 * for x in (2,inf)
80 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
81 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
82 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
83 * as follows:
84 * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
85 * = 1/sqrt(2) * (sin(x) - cos(x))
86 * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
87 * = -1/sqrt(2) * (sin(x) + cos(x))
88 * (To avoid cancellation, use
89 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
90 * to compute the worse one.)
91 *
92 * 3 Special cases
93 * j1(nan)= nan
94 * j1(0) = 0
95 * j1(inf) = 0
96 *
97 * Method -- y1(x):
98 * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
99 * 2. For x<2.
100 * Since
101 * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
102 * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
103 * We use the following function to approximate y1,
104 * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
105 * where for x in [0,2] (abs err less than 2**-65.89)
106 * U(z) = u0 + u1*z + ... + u4*z^4
107 * V(z) = 1 + v1*z + ... + v5*z^5
108 * Note: For tiny x, 1/x dominate y1 and hence
109 * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
110 * 3. For x>=2.
111 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
112 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
113 * by method mentioned above.
114 */
115
116 #include "mathimpl.h"
117 #include <float.h>
118 #include <errno.h>
119
120 #if defined(__vax__) || defined(tahoe)
121 #define _IEEE 0
122 #else
123 #define _IEEE 1
124 #define infnan(x) (0.0)
125 #endif
126
127 static double pone __P((double)), qone __P((double));
128
129 static double
130 huge = 1e300,
131 zero = 0.0,
132 one = 1.0,
133 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
134 tpi = 0.636619772367581343075535053490057448,
135
136 /* R0/S0 on [0,2] */
137 r00 = -6.250000000000000020842322918309200910191e-0002,
138 r01 = 1.407056669551897148204830386691427791200e-0003,
139 r02 = -1.599556310840356073980727783817809847071e-0005,
140 r03 = 4.967279996095844750387702652791615403527e-0008,
141 s01 = 1.915375995383634614394860200531091839635e-0002,
142 s02 = 1.859467855886309024045655476348872850396e-0004,
143 s03 = 1.177184640426236767593432585906758230822e-0006,
144 s04 = 5.046362570762170559046714468225101016915e-0009,
145 s05 = 1.235422744261379203512624973117299248281e-0011;
146
147 #define two_129 6.80564733841876926e+038 /* 2^129 */
148 #define two_m54 5.55111512312578270e-017 /* 2^-54 */
149 double j1(x)
150 double x;
151 {
152 double z, s,c,ss,cc,r,u,v,y;
153 y = fabs(x);
154 if (!finite(x)) { /* Inf or NaN */
155 if (_IEEE && x != x)
156 return(x);
157 else
158 return (copysign(x, zero));
159 }
160 y = fabs(x);
161 if (y >= 2) /* |x| >= 2.0 */
162 {
163 s = sin(y);
164 c = cos(y);
165 ss = -s-c;
166 cc = s-c;
167 if (y < .5*DBL_MAX) { /* make sure y+y not overflow */
168 z = cos(y+y);
169 if ((s*c)<zero) cc = z/ss;
170 else ss = z/cc;
171 }
172 /*
173 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
174 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
175 */
176 #if !defined(__vax__) && !defined(tahoe)
177 if (y > two_129) /* x > 2^129 */
178 z = (invsqrtpi*cc)/sqrt(y);
179 else
180 #endif /* defined(__vax__) || defined(tahoe) */
181 {
182 u = pone(y); v = qone(y);
183 z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
184 }
185 if (x < 0) return -z;
186 else return z;
187 }
188 if (y < 7.450580596923828125e-009) { /* |x|<2**-27 */
189 if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
190 }
191 z = x*x;
192 r = z*(r00+z*(r01+z*(r02+z*r03)));
193 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
194 r *= x;
195 return (x*0.5+r/s);
196 }
197
198 static double u0[5] = {
199 -1.960570906462389484206891092512047539632e-0001,
200 5.044387166398112572026169863174882070274e-0002,
201 -1.912568958757635383926261729464141209569e-0003,
202 2.352526005616105109577368905595045204577e-0005,
203 -9.190991580398788465315411784276789663849e-0008,
204 };
205 static double v0[5] = {
206 1.991673182366499064031901734535479833387e-0002,
207 2.025525810251351806268483867032781294682e-0004,
208 1.356088010975162198085369545564475416398e-0006,
209 6.227414523646214811803898435084697863445e-0009,
210 1.665592462079920695971450872592458916421e-0011,
211 };
212
213 double y1(x)
214 double x;
215 {
216 double z, s, c, ss, cc, u, v;
217 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
218 if (!finite(x)) {
219 if (!_IEEE) return (infnan(EDOM));
220 else if (x < 0)
221 return(zero/zero);
222 else if (x > 0)
223 return (0);
224 else
225 return(x);
226 }
227 if (x <= 0) {
228 if (_IEEE && x == 0) return -one/zero;
229 else if(x == 0) return(infnan(-ERANGE));
230 else if(_IEEE) return (zero/zero);
231 else return(infnan(EDOM));
232 }
233 if (x >= 2) /* |x| >= 2.0 */
234 {
235 s = sin(x);
236 c = cos(x);
237 ss = -s-c;
238 cc = s-c;
239 if (x < .5 * DBL_MAX) /* make sure x+x not overflow */
240 {
241 z = cos(x+x);
242 if ((s*c)>zero) cc = z/ss;
243 else ss = z/cc;
244 }
245 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
246 * where x0 = x-3pi/4
247 * Better formula:
248 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
249 * = 1/sqrt(2) * (sin(x) - cos(x))
250 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
251 * = -1/sqrt(2) * (cos(x) + sin(x))
252 * To avoid cancellation, use
253 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
254 * to compute the worse one.
255 */
256 if (_IEEE && x>two_129)
257 z = (invsqrtpi*ss)/sqrt(x);
258 else {
259 u = pone(x); v = qone(x);
260 z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
261 }
262 return z;
263 }
264 if (x <= two_m54) { /* x < 2**-54 */
265 return (-tpi/x);
266 }
267 z = x*x;
268 u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
269 v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
270 return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
271 }
272
273 /* For x >= 8, the asymptotic expansions of pone is
274 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
275 * We approximate pone by
276 * pone(x) = 1 + (R/S)
277 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
278 * S = 1 + ps0*s^2 + ... + ps4*s^10
279 * and
280 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
281 */
282
283 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
284 0.0,
285 1.171874999999886486643746274751925399540e-0001,
286 1.323948065930735690925827997575471527252e+0001,
287 4.120518543073785433325860184116512799375e+0002,
288 3.874745389139605254931106878336700275601e+0003,
289 7.914479540318917214253998253147871806507e+0003,
290 };
291 static double ps8[5] = {
292 1.142073703756784104235066368252692471887e+0002,
293 3.650930834208534511135396060708677099382e+0003,
294 3.695620602690334708579444954937638371808e+0004,
295 9.760279359349508334916300080109196824151e+0004,
296 3.080427206278887984185421142572315054499e+0004,
297 };
298
299 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
300 1.319905195562435287967533851581013807103e-0011,
301 1.171874931906140985709584817065144884218e-0001,
302 6.802751278684328781830052995333841452280e+0000,
303 1.083081829901891089952869437126160568246e+0002,
304 5.176361395331997166796512844100442096318e+0002,
305 5.287152013633375676874794230748055786553e+0002,
306 };
307 static double ps5[5] = {
308 5.928059872211313557747989128353699746120e+0001,
309 9.914014187336144114070148769222018425781e+0002,
310 5.353266952914879348427003712029704477451e+0003,
311 7.844690317495512717451367787640014588422e+0003,
312 1.504046888103610723953792002716816255382e+0003,
313 };
314
315 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
316 3.025039161373736032825049903408701962756e-0009,
317 1.171868655672535980750284752227495879921e-0001,
318 3.932977500333156527232725812363183251138e+0000,
319 3.511940355916369600741054592597098912682e+0001,
320 9.105501107507812029367749771053045219094e+0001,
321 4.855906851973649494139275085628195457113e+0001,
322 };
323 static double ps3[5] = {
324 3.479130950012515114598605916318694946754e+0001,
325 3.367624587478257581844639171605788622549e+0002,
326 1.046871399757751279180649307467612538415e+0003,
327 8.908113463982564638443204408234739237639e+0002,
328 1.037879324396392739952487012284401031859e+0002,
329 };
330
331 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
332 1.077108301068737449490056513753865482831e-0007,
333 1.171762194626833490512746348050035171545e-0001,
334 2.368514966676087902251125130227221462134e+0000,
335 1.224261091482612280835153832574115951447e+0001,
336 1.769397112716877301904532320376586509782e+0001,
337 5.073523125888185399030700509321145995160e+0000,
338 };
339 static double ps2[5] = {
340 2.143648593638214170243114358933327983793e+0001,
341 1.252902271684027493309211410842525120355e+0002,
342 2.322764690571628159027850677565128301361e+0002,
343 1.176793732871470939654351793502076106651e+0002,
344 8.364638933716182492500902115164881195742e+0000,
345 };
346
347 static double pone(x)
348 double x;
349 {
350 double *p,*q,z,r,s;
351 if (x >= 8.0) {p = pr8; q= ps8;}
352 else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
353 else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
354 else /* if (x >= 2.0) */ {p = pr2; q= ps2;}
355 z = one/(x*x);
356 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
357 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
358 return (one + r/s);
359 }
360
361
362 /* For x >= 8, the asymptotic expansions of qone is
363 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
364 * We approximate pone by
365 * qone(x) = s*(0.375 + (R/S))
366 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
367 * S = 1 + qs1*s^2 + ... + qs6*s^12
368 * and
369 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
370 */
371
372 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
373 0.0,
374 -1.025390624999927207385863635575804210817e-0001,
375 -1.627175345445899724355852152103771510209e+0001,
376 -7.596017225139501519843072766973047217159e+0002,
377 -1.184980667024295901645301570813228628541e+0004,
378 -4.843851242857503225866761992518949647041e+0004,
379 };
380 static double qs8[6] = {
381 1.613953697007229231029079421446916397904e+0002,
382 7.825385999233484705298782500926834217525e+0003,
383 1.338753362872495800748094112937868089032e+0005,
384 7.196577236832409151461363171617204036929e+0005,
385 6.666012326177764020898162762642290294625e+0005,
386 -2.944902643038346618211973470809456636830e+0005,
387 };
388
389 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
390 -2.089799311417640889742251585097264715678e-0011,
391 -1.025390502413754195402736294609692303708e-0001,
392 -8.056448281239359746193011295417408828404e+0000,
393 -1.836696074748883785606784430098756513222e+0002,
394 -1.373193760655081612991329358017247355921e+0003,
395 -2.612444404532156676659706427295870995743e+0003,
396 };
397 static double qs5[6] = {
398 8.127655013843357670881559763225310973118e+0001,
399 1.991798734604859732508048816860471197220e+0003,
400 1.746848519249089131627491835267411777366e+0004,
401 4.985142709103522808438758919150738000353e+0004,
402 2.794807516389181249227113445299675335543e+0004,
403 -4.719183547951285076111596613593553911065e+0003,
404 };
405
406 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
407 -5.078312264617665927595954813341838734288e-0009,
408 -1.025378298208370901410560259001035577681e-0001,
409 -4.610115811394734131557983832055607679242e+0000,
410 -5.784722165627836421815348508816936196402e+0001,
411 -2.282445407376317023842545937526967035712e+0002,
412 -2.192101284789093123936441805496580237676e+0002,
413 };
414 static double qs3[6] = {
415 4.766515503237295155392317984171640809318e+0001,
416 6.738651126766996691330687210949984203167e+0002,
417 3.380152866795263466426219644231687474174e+0003,
418 5.547729097207227642358288160210745890345e+0003,
419 1.903119193388108072238947732674639066045e+0003,
420 -1.352011914443073322978097159157678748982e+0002,
421 };
422
423 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
424 -1.783817275109588656126772316921194887979e-0007,
425 -1.025170426079855506812435356168903694433e-0001,
426 -2.752205682781874520495702498875020485552e+0000,
427 -1.966361626437037351076756351268110418862e+0001,
428 -4.232531333728305108194363846333841480336e+0001,
429 -2.137192117037040574661406572497288723430e+0001,
430 };
431 static double qs2[6] = {
432 2.953336290605238495019307530224241335502e+0001,
433 2.529815499821905343698811319455305266409e+0002,
434 7.575028348686454070022561120722815892346e+0002,
435 7.393932053204672479746835719678434981599e+0002,
436 1.559490033366661142496448853793707126179e+0002,
437 -4.959498988226281813825263003231704397158e+0000,
438 };
439
440 static double qone(x)
441 double x;
442 {
443 double *p,*q, s,r,z;
444 if (x >= 8.0) {p = qr8; q= qs8;}
445 else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
446 else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
447 else /* if (x >= 2.0) */ {p = qr2; q= qs2;}
448 z = one/(x*x);
449 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
450 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
451 return (.375 + r/s)/x;
452 }
453