n_jn.c revision 1.3 1 1.3 matt /* $NetBSD: n_jn.c,v 1.3 1998/10/20 02:26:11 matt Exp $ */
2 1.1 ragge /*-
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge /*
42 1.1 ragge * 16 December 1992
43 1.1 ragge * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44 1.1 ragge */
45 1.1 ragge
46 1.1 ragge /*
47 1.1 ragge * ====================================================
48 1.1 ragge * Copyright (C) 1992 by Sun Microsystems, Inc.
49 1.1 ragge *
50 1.1 ragge * Developed at SunPro, a Sun Microsystems, Inc. business.
51 1.1 ragge * Permission to use, copy, modify, and distribute this
52 1.1 ragge * software is freely granted, provided that this notice
53 1.1 ragge * is preserved.
54 1.1 ragge * ====================================================
55 1.1 ragge *
56 1.1 ragge * ******************* WARNING ********************
57 1.1 ragge * This is an alpha version of SunPro's FDLIBM (Freely
58 1.1 ragge * Distributable Math Library) for IEEE double precision
59 1.1 ragge * arithmetic. FDLIBM is a basic math library written
60 1.1 ragge * in C that runs on machines that conform to IEEE
61 1.1 ragge * Standard 754/854. This alpha version is distributed
62 1.1 ragge * for testing purpose. Those who use this software
63 1.1 ragge * should report any bugs to
64 1.1 ragge *
65 1.1 ragge * fdlibm-comments (at) sunpro.eng.sun.com
66 1.1 ragge *
67 1.1 ragge * -- K.C. Ng, Oct 12, 1992
68 1.1 ragge * ************************************************
69 1.1 ragge */
70 1.1 ragge
71 1.1 ragge /*
72 1.1 ragge * jn(int n, double x), yn(int n, double x)
73 1.1 ragge * floating point Bessel's function of the 1st and 2nd kind
74 1.1 ragge * of order n
75 1.1 ragge *
76 1.1 ragge * Special cases:
77 1.1 ragge * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
78 1.1 ragge * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
79 1.1 ragge * Note 2. About jn(n,x), yn(n,x)
80 1.1 ragge * For n=0, j0(x) is called,
81 1.1 ragge * for n=1, j1(x) is called,
82 1.1 ragge * for n<x, forward recursion us used starting
83 1.1 ragge * from values of j0(x) and j1(x).
84 1.1 ragge * for n>x, a continued fraction approximation to
85 1.1 ragge * j(n,x)/j(n-1,x) is evaluated and then backward
86 1.1 ragge * recursion is used starting from a supposed value
87 1.1 ragge * for j(n,x). The resulting value of j(0,x) is
88 1.1 ragge * compared with the actual value to correct the
89 1.1 ragge * supposed value of j(n,x).
90 1.1 ragge *
91 1.1 ragge * yn(n,x) is similar in all respects, except
92 1.1 ragge * that forward recursion is used for all
93 1.1 ragge * values of n>1.
94 1.1 ragge *
95 1.1 ragge */
96 1.1 ragge
97 1.2 ragge #include "mathimpl.h"
98 1.1 ragge #include <float.h>
99 1.1 ragge #include <errno.h>
100 1.1 ragge
101 1.3 matt #if defined(__vax__) || defined(tahoe)
102 1.1 ragge #define _IEEE 0
103 1.1 ragge #else
104 1.1 ragge #define _IEEE 1
105 1.1 ragge #define infnan(x) (0.0)
106 1.1 ragge #endif
107 1.1 ragge
108 1.1 ragge static double
109 1.1 ragge invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
110 1.1 ragge two = 2.0,
111 1.1 ragge zero = 0.0,
112 1.1 ragge one = 1.0;
113 1.1 ragge
114 1.1 ragge double jn(n,x)
115 1.1 ragge int n; double x;
116 1.1 ragge {
117 1.1 ragge int i, sgn;
118 1.1 ragge double a, b, temp;
119 1.1 ragge double z, w;
120 1.1 ragge
121 1.1 ragge /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
122 1.1 ragge * Thus, J(-n,x) = J(n,-x)
123 1.1 ragge */
124 1.1 ragge /* if J(n,NaN) is NaN */
125 1.1 ragge if (_IEEE && isnan(x)) return x+x;
126 1.1 ragge if (n<0){
127 1.1 ragge n = -n;
128 1.1 ragge x = -x;
129 1.1 ragge }
130 1.1 ragge if (n==0) return(j0(x));
131 1.1 ragge if (n==1) return(j1(x));
132 1.1 ragge sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */
133 1.1 ragge x = fabs(x);
134 1.1 ragge if (x == 0 || !finite (x)) /* if x is 0 or inf */
135 1.1 ragge b = zero;
136 1.1 ragge else if ((double) n <= x) {
137 1.1 ragge /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
138 1.1 ragge if (_IEEE && x >= 8.148143905337944345e+090) {
139 1.1 ragge /* x >= 2**302 */
140 1.1 ragge /* (x >> n**2)
141 1.1 ragge * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
142 1.1 ragge * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
143 1.1 ragge * Let s=sin(x), c=cos(x),
144 1.1 ragge * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
145 1.1 ragge *
146 1.1 ragge * n sin(xn)*sqt2 cos(xn)*sqt2
147 1.1 ragge * ----------------------------------
148 1.1 ragge * 0 s-c c+s
149 1.1 ragge * 1 -s-c -c+s
150 1.1 ragge * 2 -s+c -c-s
151 1.1 ragge * 3 s+c c-s
152 1.1 ragge */
153 1.1 ragge switch(n&3) {
154 1.1 ragge case 0: temp = cos(x)+sin(x); break;
155 1.1 ragge case 1: temp = -cos(x)+sin(x); break;
156 1.1 ragge case 2: temp = -cos(x)-sin(x); break;
157 1.1 ragge case 3: temp = cos(x)-sin(x); break;
158 1.1 ragge }
159 1.1 ragge b = invsqrtpi*temp/sqrt(x);
160 1.1 ragge } else {
161 1.1 ragge a = j0(x);
162 1.1 ragge b = j1(x);
163 1.1 ragge for(i=1;i<n;i++){
164 1.1 ragge temp = b;
165 1.1 ragge b = b*((double)(i+i)/x) - a; /* avoid underflow */
166 1.1 ragge a = temp;
167 1.1 ragge }
168 1.1 ragge }
169 1.1 ragge } else {
170 1.1 ragge if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
171 1.1 ragge /* x is tiny, return the first Taylor expansion of J(n,x)
172 1.1 ragge * J(n,x) = 1/n!*(x/2)^n - ...
173 1.1 ragge */
174 1.1 ragge if (n > 33) /* underflow */
175 1.1 ragge b = zero;
176 1.1 ragge else {
177 1.1 ragge temp = x*0.5; b = temp;
178 1.1 ragge for (a=one,i=2;i<=n;i++) {
179 1.1 ragge a *= (double)i; /* a = n! */
180 1.1 ragge b *= temp; /* b = (x/2)^n */
181 1.1 ragge }
182 1.1 ragge b = b/a;
183 1.1 ragge }
184 1.1 ragge } else {
185 1.1 ragge /* use backward recurrence */
186 1.1 ragge /* x x^2 x^2
187 1.1 ragge * J(n,x)/J(n-1,x) = ---- ------ ------ .....
188 1.1 ragge * 2n - 2(n+1) - 2(n+2)
189 1.1 ragge *
190 1.1 ragge * 1 1 1
191 1.1 ragge * (for large x) = ---- ------ ------ .....
192 1.1 ragge * 2n 2(n+1) 2(n+2)
193 1.1 ragge * -- - ------ - ------ -
194 1.1 ragge * x x x
195 1.1 ragge *
196 1.1 ragge * Let w = 2n/x and h=2/x, then the above quotient
197 1.1 ragge * is equal to the continued fraction:
198 1.1 ragge * 1
199 1.1 ragge * = -----------------------
200 1.1 ragge * 1
201 1.1 ragge * w - -----------------
202 1.1 ragge * 1
203 1.1 ragge * w+h - ---------
204 1.1 ragge * w+2h - ...
205 1.1 ragge *
206 1.1 ragge * To determine how many terms needed, let
207 1.1 ragge * Q(0) = w, Q(1) = w(w+h) - 1,
208 1.1 ragge * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
209 1.1 ragge * When Q(k) > 1e4 good for single
210 1.1 ragge * When Q(k) > 1e9 good for double
211 1.1 ragge * When Q(k) > 1e17 good for quadruple
212 1.1 ragge */
213 1.1 ragge /* determine k */
214 1.1 ragge double t,v;
215 1.1 ragge double q0,q1,h,tmp; int k,m;
216 1.1 ragge w = (n+n)/(double)x; h = 2.0/(double)x;
217 1.1 ragge q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
218 1.1 ragge while (q1<1.0e9) {
219 1.1 ragge k += 1; z += h;
220 1.1 ragge tmp = z*q1 - q0;
221 1.1 ragge q0 = q1;
222 1.1 ragge q1 = tmp;
223 1.1 ragge }
224 1.1 ragge m = n+n;
225 1.1 ragge for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
226 1.1 ragge a = t;
227 1.1 ragge b = one;
228 1.1 ragge /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
229 1.1 ragge * Hence, if n*(log(2n/x)) > ...
230 1.1 ragge * single 8.8722839355e+01
231 1.1 ragge * double 7.09782712893383973096e+02
232 1.1 ragge * long double 1.1356523406294143949491931077970765006170e+04
233 1.1 ragge * then recurrent value may overflow and the result will
234 1.1 ragge * likely underflow to zero
235 1.1 ragge */
236 1.1 ragge tmp = n;
237 1.1 ragge v = two/x;
238 1.1 ragge tmp = tmp*log(fabs(v*tmp));
239 1.1 ragge for (i=n-1;i>0;i--){
240 1.1 ragge temp = b;
241 1.1 ragge b = ((i+i)/x)*b - a;
242 1.1 ragge a = temp;
243 1.1 ragge /* scale b to avoid spurious overflow */
244 1.3 matt # if defined(__vax__) || defined(tahoe)
245 1.1 ragge # define BMAX 1e13
246 1.1 ragge # else
247 1.1 ragge # define BMAX 1e100
248 1.3 matt # endif /* defined(__vax__) || defined(tahoe) */
249 1.1 ragge if (b > BMAX) {
250 1.1 ragge a /= b;
251 1.1 ragge t /= b;
252 1.1 ragge b = one;
253 1.1 ragge }
254 1.1 ragge }
255 1.1 ragge b = (t*j0(x)/b);
256 1.1 ragge }
257 1.1 ragge }
258 1.1 ragge return ((sgn == 1) ? -b : b);
259 1.1 ragge }
260 1.1 ragge double yn(n,x)
261 1.1 ragge int n; double x;
262 1.1 ragge {
263 1.1 ragge int i, sign;
264 1.1 ragge double a, b, temp;
265 1.1 ragge
266 1.1 ragge /* Y(n,NaN), Y(n, x < 0) is NaN */
267 1.1 ragge if (x <= 0 || (_IEEE && x != x))
268 1.1 ragge if (_IEEE && x < 0) return zero/zero;
269 1.1 ragge else if (x < 0) return (infnan(EDOM));
270 1.1 ragge else if (_IEEE) return -one/zero;
271 1.1 ragge else return(infnan(-ERANGE));
272 1.1 ragge else if (!finite(x)) return(0);
273 1.1 ragge sign = 1;
274 1.1 ragge if (n<0){
275 1.1 ragge n = -n;
276 1.1 ragge sign = 1 - ((n&1)<<2);
277 1.1 ragge }
278 1.1 ragge if (n == 0) return(y0(x));
279 1.1 ragge if (n == 1) return(sign*y1(x));
280 1.1 ragge if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
281 1.1 ragge /* (x >> n**2)
282 1.1 ragge * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
283 1.1 ragge * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
284 1.1 ragge * Let s=sin(x), c=cos(x),
285 1.1 ragge * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
286 1.1 ragge *
287 1.1 ragge * n sin(xn)*sqt2 cos(xn)*sqt2
288 1.1 ragge * ----------------------------------
289 1.1 ragge * 0 s-c c+s
290 1.1 ragge * 1 -s-c -c+s
291 1.1 ragge * 2 -s+c -c-s
292 1.1 ragge * 3 s+c c-s
293 1.1 ragge */
294 1.1 ragge switch (n&3) {
295 1.1 ragge case 0: temp = sin(x)-cos(x); break;
296 1.1 ragge case 1: temp = -sin(x)-cos(x); break;
297 1.1 ragge case 2: temp = -sin(x)+cos(x); break;
298 1.1 ragge case 3: temp = sin(x)+cos(x); break;
299 1.1 ragge }
300 1.1 ragge b = invsqrtpi*temp/sqrt(x);
301 1.1 ragge } else {
302 1.1 ragge a = y0(x);
303 1.1 ragge b = y1(x);
304 1.1 ragge /* quit if b is -inf */
305 1.1 ragge for (i = 1; i < n && !finite(b); i++){
306 1.1 ragge temp = b;
307 1.1 ragge b = ((double)(i+i)/x)*b - a;
308 1.1 ragge a = temp;
309 1.1 ragge }
310 1.1 ragge }
311 1.1 ragge if (!_IEEE && !finite(b))
312 1.1 ragge return (infnan(-sign * ERANGE));
313 1.1 ragge return ((sign > 0) ? b : -b);
314 1.1 ragge }
315