Home | History | Annotate | Line # | Download | only in noieee_src
n_jn.c revision 1.1
      1 /*	$NetBSD: n_jn.c,v 1.1 1995/10/10 23:36:54 ragge Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
     37 #endif /* not lint */
     38 
     39 /*
     40  * 16 December 1992
     41  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     42  */
     43 
     44 /*
     45  * ====================================================
     46  * Copyright (C) 1992 by Sun Microsystems, Inc.
     47  *
     48  * Developed at SunPro, a Sun Microsystems, Inc. business.
     49  * Permission to use, copy, modify, and distribute this
     50  * software is freely granted, provided that this notice
     51  * is preserved.
     52  * ====================================================
     53  *
     54  * ******************* WARNING ********************
     55  * This is an alpha version of SunPro's FDLIBM (Freely
     56  * Distributable Math Library) for IEEE double precision
     57  * arithmetic. FDLIBM is a basic math library written
     58  * in C that runs on machines that conform to IEEE
     59  * Standard 754/854. This alpha version is distributed
     60  * for testing purpose. Those who use this software
     61  * should report any bugs to
     62  *
     63  *		fdlibm-comments (at) sunpro.eng.sun.com
     64  *
     65  * -- K.C. Ng, Oct 12, 1992
     66  * ************************************************
     67  */
     68 
     69 /*
     70  * jn(int n, double x), yn(int n, double x)
     71  * floating point Bessel's function of the 1st and 2nd kind
     72  * of order n
     73  *
     74  * Special cases:
     75  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
     76  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
     77  * Note 2. About jn(n,x), yn(n,x)
     78  *	For n=0, j0(x) is called,
     79  *	for n=1, j1(x) is called,
     80  *	for n<x, forward recursion us used starting
     81  *	from values of j0(x) and j1(x).
     82  *	for n>x, a continued fraction approximation to
     83  *	j(n,x)/j(n-1,x) is evaluated and then backward
     84  *	recursion is used starting from a supposed value
     85  *	for j(n,x). The resulting value of j(0,x) is
     86  *	compared with the actual value to correct the
     87  *	supposed value of j(n,x).
     88  *
     89  *	yn(n,x) is similar in all respects, except
     90  *	that forward recursion is used for all
     91  *	values of n>1.
     92  *
     93  */
     94 
     95 #include <math.h>
     96 #include <float.h>
     97 #include <errno.h>
     98 
     99 #if defined(vax) || defined(tahoe)
    100 #define _IEEE	0
    101 #else
    102 #define _IEEE	1
    103 #define infnan(x) (0.0)
    104 #endif
    105 
    106 static double
    107 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    108 two  = 2.0,
    109 zero = 0.0,
    110 one  = 1.0;
    111 
    112 double jn(n,x)
    113 	int n; double x;
    114 {
    115 	int i, sgn;
    116 	double a, b, temp;
    117 	double z, w;
    118 
    119     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
    120      * Thus, J(-n,x) = J(n,-x)
    121      */
    122     /* if J(n,NaN) is NaN */
    123 	if (_IEEE && isnan(x)) return x+x;
    124 	if (n<0){
    125 		n = -n;
    126 		x = -x;
    127 	}
    128 	if (n==0) return(j0(x));
    129 	if (n==1) return(j1(x));
    130 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
    131 	x = fabs(x);
    132 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
    133 	    b = zero;
    134 	else if ((double) n <= x) {
    135 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
    136 	    if (_IEEE && x >= 8.148143905337944345e+090) {
    137 					/* x >= 2**302 */
    138     /* (x >> n**2)
    139      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    140      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    141      *	    Let s=sin(x), c=cos(x),
    142      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    143      *
    144      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
    145      *		----------------------------------
    146      *		   0	 s-c		 c+s
    147      *		   1	-s-c 		-c+s
    148      *		   2	-s+c		-c-s
    149      *		   3	 s+c		 c-s
    150      */
    151 		switch(n&3) {
    152 		    case 0: temp =  cos(x)+sin(x); break;
    153 		    case 1: temp = -cos(x)+sin(x); break;
    154 		    case 2: temp = -cos(x)-sin(x); break;
    155 		    case 3: temp =  cos(x)-sin(x); break;
    156 		}
    157 		b = invsqrtpi*temp/sqrt(x);
    158 	    } else {
    159 	        a = j0(x);
    160 	        b = j1(x);
    161 	        for(i=1;i<n;i++){
    162 		    temp = b;
    163 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
    164 		    a = temp;
    165 	        }
    166 	    }
    167 	} else {
    168 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
    169     /* x is tiny, return the first Taylor expansion of J(n,x)
    170      * J(n,x) = 1/n!*(x/2)^n  - ...
    171      */
    172 		if (n > 33)	/* underflow */
    173 		    b = zero;
    174 		else {
    175 		    temp = x*0.5; b = temp;
    176 		    for (a=one,i=2;i<=n;i++) {
    177 			a *= (double)i;		/* a = n! */
    178 			b *= temp;		/* b = (x/2)^n */
    179 		    }
    180 		    b = b/a;
    181 		}
    182 	    } else {
    183 		/* use backward recurrence */
    184 		/* 			x      x^2      x^2
    185 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
    186 		 *			2n  - 2(n+1) - 2(n+2)
    187 		 *
    188 		 * 			1      1        1
    189 		 *  (for large x)   =  ----  ------   ------   .....
    190 		 *			2n   2(n+1)   2(n+2)
    191 		 *			-- - ------ - ------ -
    192 		 *			 x     x         x
    193 		 *
    194 		 * Let w = 2n/x and h=2/x, then the above quotient
    195 		 * is equal to the continued fraction:
    196 		 *		    1
    197 		 *	= -----------------------
    198 		 *		       1
    199 		 *	   w - -----------------
    200 		 *			  1
    201 		 * 	        w+h - ---------
    202 		 *		       w+2h - ...
    203 		 *
    204 		 * To determine how many terms needed, let
    205 		 * Q(0) = w, Q(1) = w(w+h) - 1,
    206 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
    207 		 * When Q(k) > 1e4	good for single
    208 		 * When Q(k) > 1e9	good for double
    209 		 * When Q(k) > 1e17	good for quadruple
    210 		 */
    211 	    /* determine k */
    212 		double t,v;
    213 		double q0,q1,h,tmp; int k,m;
    214 		w  = (n+n)/(double)x; h = 2.0/(double)x;
    215 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
    216 		while (q1<1.0e9) {
    217 			k += 1; z += h;
    218 			tmp = z*q1 - q0;
    219 			q0 = q1;
    220 			q1 = tmp;
    221 		}
    222 		m = n+n;
    223 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
    224 		a = t;
    225 		b = one;
    226 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
    227 		 *  Hence, if n*(log(2n/x)) > ...
    228 		 *  single 8.8722839355e+01
    229 		 *  double 7.09782712893383973096e+02
    230 		 *  long double 1.1356523406294143949491931077970765006170e+04
    231 		 *  then recurrent value may overflow and the result will
    232 		 *  likely underflow to zero
    233 		 */
    234 		tmp = n;
    235 		v = two/x;
    236 		tmp = tmp*log(fabs(v*tmp));
    237 	    	for (i=n-1;i>0;i--){
    238 		        temp = b;
    239 		        b = ((i+i)/x)*b - a;
    240 		        a = temp;
    241 		    /* scale b to avoid spurious overflow */
    242 #			if defined(vax) || defined(tahoe)
    243 #				define BMAX 1e13
    244 #			else
    245 #				define BMAX 1e100
    246 #			endif /* defined(vax) || defined(tahoe) */
    247 			if (b > BMAX) {
    248 				a /= b;
    249 				t /= b;
    250 				b = one;
    251 			}
    252 		}
    253 	    	b = (t*j0(x)/b);
    254 	    }
    255 	}
    256 	return ((sgn == 1) ? -b : b);
    257 }
    258 double yn(n,x)
    259 	int n; double x;
    260 {
    261 	int i, sign;
    262 	double a, b, temp;
    263 
    264     /* Y(n,NaN), Y(n, x < 0) is NaN */
    265 	if (x <= 0 || (_IEEE && x != x))
    266 		if (_IEEE && x < 0) return zero/zero;
    267 		else if (x < 0)     return (infnan(EDOM));
    268 		else if (_IEEE)     return -one/zero;
    269 		else		    return(infnan(-ERANGE));
    270 	else if (!finite(x)) return(0);
    271 	sign = 1;
    272 	if (n<0){
    273 		n = -n;
    274 		sign = 1 - ((n&1)<<2);
    275 	}
    276 	if (n == 0) return(y0(x));
    277 	if (n == 1) return(sign*y1(x));
    278 	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
    279     /* (x >> n**2)
    280      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    281      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    282      *	    Let s=sin(x), c=cos(x),
    283      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    284      *
    285      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
    286      *		----------------------------------
    287      *		   0	 s-c		 c+s
    288      *		   1	-s-c 		-c+s
    289      *		   2	-s+c		-c-s
    290      *		   3	 s+c		 c-s
    291      */
    292 		switch (n&3) {
    293 		    case 0: temp =  sin(x)-cos(x); break;
    294 		    case 1: temp = -sin(x)-cos(x); break;
    295 		    case 2: temp = -sin(x)+cos(x); break;
    296 		    case 3: temp =  sin(x)+cos(x); break;
    297 		}
    298 		b = invsqrtpi*temp/sqrt(x);
    299 	} else {
    300 	    a = y0(x);
    301 	    b = y1(x);
    302 	/* quit if b is -inf */
    303 	    for (i = 1; i < n && !finite(b); i++){
    304 		temp = b;
    305 		b = ((double)(i+i)/x)*b - a;
    306 		a = temp;
    307 	    }
    308 	}
    309 	if (!_IEEE && !finite(b))
    310 		return (infnan(-sign * ERANGE));
    311 	return ((sign > 0) ? b : -b);
    312 }
    313