n_jn.c revision 1.3 1 /* $NetBSD: n_jn.c,v 1.3 1998/10/20 02:26:11 matt Exp $ */
2 /*-
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40
41 /*
42 * 16 December 1992
43 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
44 */
45
46 /*
47 * ====================================================
48 * Copyright (C) 1992 by Sun Microsystems, Inc.
49 *
50 * Developed at SunPro, a Sun Microsystems, Inc. business.
51 * Permission to use, copy, modify, and distribute this
52 * software is freely granted, provided that this notice
53 * is preserved.
54 * ====================================================
55 *
56 * ******************* WARNING ********************
57 * This is an alpha version of SunPro's FDLIBM (Freely
58 * Distributable Math Library) for IEEE double precision
59 * arithmetic. FDLIBM is a basic math library written
60 * in C that runs on machines that conform to IEEE
61 * Standard 754/854. This alpha version is distributed
62 * for testing purpose. Those who use this software
63 * should report any bugs to
64 *
65 * fdlibm-comments (at) sunpro.eng.sun.com
66 *
67 * -- K.C. Ng, Oct 12, 1992
68 * ************************************************
69 */
70
71 /*
72 * jn(int n, double x), yn(int n, double x)
73 * floating point Bessel's function of the 1st and 2nd kind
74 * of order n
75 *
76 * Special cases:
77 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
78 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
79 * Note 2. About jn(n,x), yn(n,x)
80 * For n=0, j0(x) is called,
81 * for n=1, j1(x) is called,
82 * for n<x, forward recursion us used starting
83 * from values of j0(x) and j1(x).
84 * for n>x, a continued fraction approximation to
85 * j(n,x)/j(n-1,x) is evaluated and then backward
86 * recursion is used starting from a supposed value
87 * for j(n,x). The resulting value of j(0,x) is
88 * compared with the actual value to correct the
89 * supposed value of j(n,x).
90 *
91 * yn(n,x) is similar in all respects, except
92 * that forward recursion is used for all
93 * values of n>1.
94 *
95 */
96
97 #include "mathimpl.h"
98 #include <float.h>
99 #include <errno.h>
100
101 #if defined(__vax__) || defined(tahoe)
102 #define _IEEE 0
103 #else
104 #define _IEEE 1
105 #define infnan(x) (0.0)
106 #endif
107
108 static double
109 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
110 two = 2.0,
111 zero = 0.0,
112 one = 1.0;
113
114 double jn(n,x)
115 int n; double x;
116 {
117 int i, sgn;
118 double a, b, temp;
119 double z, w;
120
121 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
122 * Thus, J(-n,x) = J(n,-x)
123 */
124 /* if J(n,NaN) is NaN */
125 if (_IEEE && isnan(x)) return x+x;
126 if (n<0){
127 n = -n;
128 x = -x;
129 }
130 if (n==0) return(j0(x));
131 if (n==1) return(j1(x));
132 sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */
133 x = fabs(x);
134 if (x == 0 || !finite (x)) /* if x is 0 or inf */
135 b = zero;
136 else if ((double) n <= x) {
137 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
138 if (_IEEE && x >= 8.148143905337944345e+090) {
139 /* x >= 2**302 */
140 /* (x >> n**2)
141 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
142 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
143 * Let s=sin(x), c=cos(x),
144 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
145 *
146 * n sin(xn)*sqt2 cos(xn)*sqt2
147 * ----------------------------------
148 * 0 s-c c+s
149 * 1 -s-c -c+s
150 * 2 -s+c -c-s
151 * 3 s+c c-s
152 */
153 switch(n&3) {
154 case 0: temp = cos(x)+sin(x); break;
155 case 1: temp = -cos(x)+sin(x); break;
156 case 2: temp = -cos(x)-sin(x); break;
157 case 3: temp = cos(x)-sin(x); break;
158 }
159 b = invsqrtpi*temp/sqrt(x);
160 } else {
161 a = j0(x);
162 b = j1(x);
163 for(i=1;i<n;i++){
164 temp = b;
165 b = b*((double)(i+i)/x) - a; /* avoid underflow */
166 a = temp;
167 }
168 }
169 } else {
170 if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
171 /* x is tiny, return the first Taylor expansion of J(n,x)
172 * J(n,x) = 1/n!*(x/2)^n - ...
173 */
174 if (n > 33) /* underflow */
175 b = zero;
176 else {
177 temp = x*0.5; b = temp;
178 for (a=one,i=2;i<=n;i++) {
179 a *= (double)i; /* a = n! */
180 b *= temp; /* b = (x/2)^n */
181 }
182 b = b/a;
183 }
184 } else {
185 /* use backward recurrence */
186 /* x x^2 x^2
187 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
188 * 2n - 2(n+1) - 2(n+2)
189 *
190 * 1 1 1
191 * (for large x) = ---- ------ ------ .....
192 * 2n 2(n+1) 2(n+2)
193 * -- - ------ - ------ -
194 * x x x
195 *
196 * Let w = 2n/x and h=2/x, then the above quotient
197 * is equal to the continued fraction:
198 * 1
199 * = -----------------------
200 * 1
201 * w - -----------------
202 * 1
203 * w+h - ---------
204 * w+2h - ...
205 *
206 * To determine how many terms needed, let
207 * Q(0) = w, Q(1) = w(w+h) - 1,
208 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
209 * When Q(k) > 1e4 good for single
210 * When Q(k) > 1e9 good for double
211 * When Q(k) > 1e17 good for quadruple
212 */
213 /* determine k */
214 double t,v;
215 double q0,q1,h,tmp; int k,m;
216 w = (n+n)/(double)x; h = 2.0/(double)x;
217 q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
218 while (q1<1.0e9) {
219 k += 1; z += h;
220 tmp = z*q1 - q0;
221 q0 = q1;
222 q1 = tmp;
223 }
224 m = n+n;
225 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
226 a = t;
227 b = one;
228 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
229 * Hence, if n*(log(2n/x)) > ...
230 * single 8.8722839355e+01
231 * double 7.09782712893383973096e+02
232 * long double 1.1356523406294143949491931077970765006170e+04
233 * then recurrent value may overflow and the result will
234 * likely underflow to zero
235 */
236 tmp = n;
237 v = two/x;
238 tmp = tmp*log(fabs(v*tmp));
239 for (i=n-1;i>0;i--){
240 temp = b;
241 b = ((i+i)/x)*b - a;
242 a = temp;
243 /* scale b to avoid spurious overflow */
244 # if defined(__vax__) || defined(tahoe)
245 # define BMAX 1e13
246 # else
247 # define BMAX 1e100
248 # endif /* defined(__vax__) || defined(tahoe) */
249 if (b > BMAX) {
250 a /= b;
251 t /= b;
252 b = one;
253 }
254 }
255 b = (t*j0(x)/b);
256 }
257 }
258 return ((sgn == 1) ? -b : b);
259 }
260 double yn(n,x)
261 int n; double x;
262 {
263 int i, sign;
264 double a, b, temp;
265
266 /* Y(n,NaN), Y(n, x < 0) is NaN */
267 if (x <= 0 || (_IEEE && x != x))
268 if (_IEEE && x < 0) return zero/zero;
269 else if (x < 0) return (infnan(EDOM));
270 else if (_IEEE) return -one/zero;
271 else return(infnan(-ERANGE));
272 else if (!finite(x)) return(0);
273 sign = 1;
274 if (n<0){
275 n = -n;
276 sign = 1 - ((n&1)<<2);
277 }
278 if (n == 0) return(y0(x));
279 if (n == 1) return(sign*y1(x));
280 if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
281 /* (x >> n**2)
282 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
283 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
284 * Let s=sin(x), c=cos(x),
285 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
286 *
287 * n sin(xn)*sqt2 cos(xn)*sqt2
288 * ----------------------------------
289 * 0 s-c c+s
290 * 1 -s-c -c+s
291 * 2 -s+c -c-s
292 * 3 s+c c-s
293 */
294 switch (n&3) {
295 case 0: temp = sin(x)-cos(x); break;
296 case 1: temp = -sin(x)-cos(x); break;
297 case 2: temp = -sin(x)+cos(x); break;
298 case 3: temp = sin(x)+cos(x); break;
299 }
300 b = invsqrtpi*temp/sqrt(x);
301 } else {
302 a = y0(x);
303 b = y1(x);
304 /* quit if b is -inf */
305 for (i = 1; i < n && !finite(b); i++){
306 temp = b;
307 b = ((double)(i+i)/x)*b - a;
308 a = temp;
309 }
310 }
311 if (!_IEEE && !finite(b))
312 return (infnan(-sign * ERANGE));
313 return ((sign > 0) ? b : -b);
314 }
315