Home | History | Annotate | Line # | Download | only in noieee_src
n_jn.c revision 1.3
      1 /*	$NetBSD: n_jn.c,v 1.3 1998/10/20 02:26:11 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 /*
     42  * 16 December 1992
     43  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
     44  */
     45 
     46 /*
     47  * ====================================================
     48  * Copyright (C) 1992 by Sun Microsystems, Inc.
     49  *
     50  * Developed at SunPro, a Sun Microsystems, Inc. business.
     51  * Permission to use, copy, modify, and distribute this
     52  * software is freely granted, provided that this notice
     53  * is preserved.
     54  * ====================================================
     55  *
     56  * ******************* WARNING ********************
     57  * This is an alpha version of SunPro's FDLIBM (Freely
     58  * Distributable Math Library) for IEEE double precision
     59  * arithmetic. FDLIBM is a basic math library written
     60  * in C that runs on machines that conform to IEEE
     61  * Standard 754/854. This alpha version is distributed
     62  * for testing purpose. Those who use this software
     63  * should report any bugs to
     64  *
     65  *		fdlibm-comments (at) sunpro.eng.sun.com
     66  *
     67  * -- K.C. Ng, Oct 12, 1992
     68  * ************************************************
     69  */
     70 
     71 /*
     72  * jn(int n, double x), yn(int n, double x)
     73  * floating point Bessel's function of the 1st and 2nd kind
     74  * of order n
     75  *
     76  * Special cases:
     77  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
     78  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
     79  * Note 2. About jn(n,x), yn(n,x)
     80  *	For n=0, j0(x) is called,
     81  *	for n=1, j1(x) is called,
     82  *	for n<x, forward recursion us used starting
     83  *	from values of j0(x) and j1(x).
     84  *	for n>x, a continued fraction approximation to
     85  *	j(n,x)/j(n-1,x) is evaluated and then backward
     86  *	recursion is used starting from a supposed value
     87  *	for j(n,x). The resulting value of j(0,x) is
     88  *	compared with the actual value to correct the
     89  *	supposed value of j(n,x).
     90  *
     91  *	yn(n,x) is similar in all respects, except
     92  *	that forward recursion is used for all
     93  *	values of n>1.
     94  *
     95  */
     96 
     97 #include "mathimpl.h"
     98 #include <float.h>
     99 #include <errno.h>
    100 
    101 #if defined(__vax__) || defined(tahoe)
    102 #define _IEEE	0
    103 #else
    104 #define _IEEE	1
    105 #define infnan(x) (0.0)
    106 #endif
    107 
    108 static double
    109 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
    110 two  = 2.0,
    111 zero = 0.0,
    112 one  = 1.0;
    113 
    114 double jn(n,x)
    115 	int n; double x;
    116 {
    117 	int i, sgn;
    118 	double a, b, temp;
    119 	double z, w;
    120 
    121     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
    122      * Thus, J(-n,x) = J(n,-x)
    123      */
    124     /* if J(n,NaN) is NaN */
    125 	if (_IEEE && isnan(x)) return x+x;
    126 	if (n<0){
    127 		n = -n;
    128 		x = -x;
    129 	}
    130 	if (n==0) return(j0(x));
    131 	if (n==1) return(j1(x));
    132 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
    133 	x = fabs(x);
    134 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
    135 	    b = zero;
    136 	else if ((double) n <= x) {
    137 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
    138 	    if (_IEEE && x >= 8.148143905337944345e+090) {
    139 					/* x >= 2**302 */
    140     /* (x >> n**2)
    141      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    142      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    143      *	    Let s=sin(x), c=cos(x),
    144      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    145      *
    146      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
    147      *		----------------------------------
    148      *		   0	 s-c		 c+s
    149      *		   1	-s-c 		-c+s
    150      *		   2	-s+c		-c-s
    151      *		   3	 s+c		 c-s
    152      */
    153 		switch(n&3) {
    154 		    case 0: temp =  cos(x)+sin(x); break;
    155 		    case 1: temp = -cos(x)+sin(x); break;
    156 		    case 2: temp = -cos(x)-sin(x); break;
    157 		    case 3: temp =  cos(x)-sin(x); break;
    158 		}
    159 		b = invsqrtpi*temp/sqrt(x);
    160 	    } else {
    161 	        a = j0(x);
    162 	        b = j1(x);
    163 	        for(i=1;i<n;i++){
    164 		    temp = b;
    165 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
    166 		    a = temp;
    167 	        }
    168 	    }
    169 	} else {
    170 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
    171     /* x is tiny, return the first Taylor expansion of J(n,x)
    172      * J(n,x) = 1/n!*(x/2)^n  - ...
    173      */
    174 		if (n > 33)	/* underflow */
    175 		    b = zero;
    176 		else {
    177 		    temp = x*0.5; b = temp;
    178 		    for (a=one,i=2;i<=n;i++) {
    179 			a *= (double)i;		/* a = n! */
    180 			b *= temp;		/* b = (x/2)^n */
    181 		    }
    182 		    b = b/a;
    183 		}
    184 	    } else {
    185 		/* use backward recurrence */
    186 		/* 			x      x^2      x^2
    187 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
    188 		 *			2n  - 2(n+1) - 2(n+2)
    189 		 *
    190 		 * 			1      1        1
    191 		 *  (for large x)   =  ----  ------   ------   .....
    192 		 *			2n   2(n+1)   2(n+2)
    193 		 *			-- - ------ - ------ -
    194 		 *			 x     x         x
    195 		 *
    196 		 * Let w = 2n/x and h=2/x, then the above quotient
    197 		 * is equal to the continued fraction:
    198 		 *		    1
    199 		 *	= -----------------------
    200 		 *		       1
    201 		 *	   w - -----------------
    202 		 *			  1
    203 		 * 	        w+h - ---------
    204 		 *		       w+2h - ...
    205 		 *
    206 		 * To determine how many terms needed, let
    207 		 * Q(0) = w, Q(1) = w(w+h) - 1,
    208 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
    209 		 * When Q(k) > 1e4	good for single
    210 		 * When Q(k) > 1e9	good for double
    211 		 * When Q(k) > 1e17	good for quadruple
    212 		 */
    213 	    /* determine k */
    214 		double t,v;
    215 		double q0,q1,h,tmp; int k,m;
    216 		w  = (n+n)/(double)x; h = 2.0/(double)x;
    217 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
    218 		while (q1<1.0e9) {
    219 			k += 1; z += h;
    220 			tmp = z*q1 - q0;
    221 			q0 = q1;
    222 			q1 = tmp;
    223 		}
    224 		m = n+n;
    225 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
    226 		a = t;
    227 		b = one;
    228 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
    229 		 *  Hence, if n*(log(2n/x)) > ...
    230 		 *  single 8.8722839355e+01
    231 		 *  double 7.09782712893383973096e+02
    232 		 *  long double 1.1356523406294143949491931077970765006170e+04
    233 		 *  then recurrent value may overflow and the result will
    234 		 *  likely underflow to zero
    235 		 */
    236 		tmp = n;
    237 		v = two/x;
    238 		tmp = tmp*log(fabs(v*tmp));
    239 	    	for (i=n-1;i>0;i--){
    240 		        temp = b;
    241 		        b = ((i+i)/x)*b - a;
    242 		        a = temp;
    243 		    /* scale b to avoid spurious overflow */
    244 #			if defined(__vax__) || defined(tahoe)
    245 #				define BMAX 1e13
    246 #			else
    247 #				define BMAX 1e100
    248 #			endif /* defined(__vax__) || defined(tahoe) */
    249 			if (b > BMAX) {
    250 				a /= b;
    251 				t /= b;
    252 				b = one;
    253 			}
    254 		}
    255 	    	b = (t*j0(x)/b);
    256 	    }
    257 	}
    258 	return ((sgn == 1) ? -b : b);
    259 }
    260 double yn(n,x)
    261 	int n; double x;
    262 {
    263 	int i, sign;
    264 	double a, b, temp;
    265 
    266     /* Y(n,NaN), Y(n, x < 0) is NaN */
    267 	if (x <= 0 || (_IEEE && x != x))
    268 		if (_IEEE && x < 0) return zero/zero;
    269 		else if (x < 0)     return (infnan(EDOM));
    270 		else if (_IEEE)     return -one/zero;
    271 		else		    return(infnan(-ERANGE));
    272 	else if (!finite(x)) return(0);
    273 	sign = 1;
    274 	if (n<0){
    275 		n = -n;
    276 		sign = 1 - ((n&1)<<2);
    277 	}
    278 	if (n == 0) return(y0(x));
    279 	if (n == 1) return(sign*y1(x));
    280 	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
    281     /* (x >> n**2)
    282      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    283      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    284      *	    Let s=sin(x), c=cos(x),
    285      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    286      *
    287      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
    288      *		----------------------------------
    289      *		   0	 s-c		 c+s
    290      *		   1	-s-c 		-c+s
    291      *		   2	-s+c		-c-s
    292      *		   3	 s+c		 c-s
    293      */
    294 		switch (n&3) {
    295 		    case 0: temp =  sin(x)-cos(x); break;
    296 		    case 1: temp = -sin(x)-cos(x); break;
    297 		    case 2: temp = -sin(x)+cos(x); break;
    298 		    case 3: temp =  sin(x)+cos(x); break;
    299 		}
    300 		b = invsqrtpi*temp/sqrt(x);
    301 	} else {
    302 	    a = y0(x);
    303 	    b = y1(x);
    304 	/* quit if b is -inf */
    305 	    for (i = 1; i < n && !finite(b); i++){
    306 		temp = b;
    307 		b = ((double)(i+i)/x)*b - a;
    308 		a = temp;
    309 	    }
    310 	}
    311 	if (!_IEEE && !finite(b))
    312 		return (infnan(-sign * ERANGE));
    313 	return ((sign > 0) ? b : -b);
    314 }
    315