1 1.8 riastrad /* $NetBSD: n_lgamma.c,v 1.8 2024/06/09 14:09:27 riastradh Exp $ */ 2 1.1 ragge /*- 3 1.1 ragge * Copyright (c) 1992, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.5 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge */ 30 1.1 ragge 31 1.1 ragge #ifndef lint 32 1.2 ragge #if 0 33 1.1 ragge static char sccsid[] = "@(#)lgamma.c 8.2 (Berkeley) 11/30/93"; 34 1.2 ragge #endif 35 1.1 ragge #endif /* not lint */ 36 1.1 ragge 37 1.1 ragge /* 38 1.1 ragge * Coded by Peter McIlroy, Nov 1992; 39 1.1 ragge * 40 1.6 wiz * The financial support of UUNET Communications Services is gratefully 41 1.1 ragge * acknowledged. 42 1.1 ragge */ 43 1.1 ragge 44 1.1 ragge #include <math.h> 45 1.1 ragge #include <errno.h> 46 1.1 ragge 47 1.1 ragge #include "mathimpl.h" 48 1.1 ragge 49 1.1 ragge /* Log gamma function. 50 1.1 ragge * Error: x > 0 error < 1.3ulp. 51 1.1 ragge * x > 4, error < 1ulp. 52 1.1 ragge * x > 9, error < .6ulp. 53 1.1 ragge * x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0) 54 1.1 ragge * Method: 55 1.1 ragge * x > 6: 56 1.1 ragge * Use the asymptotic expansion (Stirling's Formula) 57 1.1 ragge * 0 < x < 6: 58 1.1 ragge * Use gamma(x+1) = x*gamma(x) for argument reduction. 59 1.1 ragge * Use rational approximation in 60 1.1 ragge * the range 1.2, 2.5 61 1.1 ragge * Two approximations are used, one centered at the 62 1.1 ragge * minimum to ensure monotonicity; one centered at 2 63 1.1 ragge * to maintain small relative error. 64 1.1 ragge * x < 0: 65 1.1 ragge * Use the reflection formula, 66 1.1 ragge * G(1-x)G(x) = PI/sin(PI*x) 67 1.1 ragge * Special values: 68 1.1 ragge * non-positive integer returns +Inf. 69 1.1 ragge * NaN returns NaN 70 1.1 ragge */ 71 1.3 matt #if defined(__vax__) || defined(tahoe) 72 1.1 ragge #define _IEEE 0 73 1.1 ragge /* double and float have same size exponent field */ 74 1.1 ragge #define TRUNC(x) x = (double) (float) (x) 75 1.1 ragge #else 76 1.4 matt static int endian; 77 1.1 ragge #define _IEEE 1 78 1.1 ragge #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000 79 1.1 ragge #define infnan(x) 0.0 80 1.1 ragge #endif 81 1.1 ragge 82 1.1 ragge static double small_lgam(double); 83 1.1 ragge static double large_lgam(double); 84 1.8 riastrad static double neg_lgam(double, int *); 85 1.4 matt static const double one = 1.0; 86 1.1 ragge int signgam; 87 1.1 ragge 88 1.1 ragge #define UNDERFL (1e-1020 * 1e-1020) 89 1.1 ragge 90 1.1 ragge #define LEFT (1.0 - (x0 + .25)) 91 1.1 ragge #define RIGHT (x0 - .218) 92 1.1 ragge /* 93 1.2 ragge * Constants for approximation in [1.244,1.712] 94 1.1 ragge */ 95 1.1 ragge #define x0 0.461632144968362356785 96 1.1 ragge #define x0_lo -.000000000000000015522348162858676890521 97 1.1 ragge #define a0_hi -0.12148629128932952880859 98 1.1 ragge #define a0_lo .0000000007534799204229502 99 1.1 ragge #define r0 -2.771227512955130520e-002 100 1.1 ragge #define r1 -2.980729795228150847e-001 101 1.1 ragge #define r2 -3.257411333183093394e-001 102 1.1 ragge #define r3 -1.126814387531706041e-001 103 1.1 ragge #define r4 -1.129130057170225562e-002 104 1.1 ragge #define r5 -2.259650588213369095e-005 105 1.1 ragge #define s0 1.714457160001714442e+000 106 1.1 ragge #define s1 2.786469504618194648e+000 107 1.1 ragge #define s2 1.564546365519179805e+000 108 1.1 ragge #define s3 3.485846389981109850e-001 109 1.1 ragge #define s4 2.467759345363656348e-002 110 1.1 ragge /* 111 1.1 ragge * Constants for approximation in [1.71, 2.5] 112 1.1 ragge */ 113 1.1 ragge #define a1_hi 4.227843350984671344505727574870e-01 114 1.1 ragge #define a1_lo 4.670126436531227189e-18 115 1.1 ragge #define p0 3.224670334241133695662995251041e-01 116 1.1 ragge #define p1 3.569659696950364669021382724168e-01 117 1.1 ragge #define p2 1.342918716072560025853732668111e-01 118 1.1 ragge #define p3 1.950702176409779831089963408886e-02 119 1.1 ragge #define p4 8.546740251667538090796227834289e-04 120 1.1 ragge #define q0 1.000000000000000444089209850062e+00 121 1.1 ragge #define q1 1.315850076960161985084596381057e+00 122 1.1 ragge #define q2 6.274644311862156431658377186977e-01 123 1.1 ragge #define q3 1.304706631926259297049597307705e-01 124 1.1 ragge #define q4 1.102815279606722369265536798366e-02 125 1.1 ragge #define q5 2.512690594856678929537585620579e-04 126 1.1 ragge #define q6 -1.003597548112371003358107325598e-06 127 1.1 ragge /* 128 1.1 ragge * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf]. 129 1.1 ragge */ 130 1.1 ragge #define lns2pi .418938533204672741780329736405 131 1.1 ragge #define pb0 8.33333333333333148296162562474e-02 132 1.1 ragge #define pb1 -2.77777777774548123579378966497e-03 133 1.1 ragge #define pb2 7.93650778754435631476282786423e-04 134 1.1 ragge #define pb3 -5.95235082566672847950717262222e-04 135 1.1 ragge #define pb4 8.41428560346653702135821806252e-04 136 1.1 ragge #define pb5 -1.89773526463879200348872089421e-03 137 1.1 ragge #define pb6 5.69394463439411649408050664078e-03 138 1.1 ragge #define pb7 -1.44705562421428915453880392761e-02 139 1.1 ragge 140 1.8 riastrad __weak_alias(lgammal, lgamma) 141 1.8 riastrad __weak_alias(lgammal_r, lgamma_r) 142 1.8 riastrad 143 1.8 riastrad double 144 1.1 ragge lgamma(double x) 145 1.1 ragge { 146 1.8 riastrad 147 1.8 riastrad return lgamma_r(x, &signgam); 148 1.8 riastrad } 149 1.8 riastrad 150 1.8 riastrad double 151 1.8 riastrad lgamma_r(double x, int *signgamp) 152 1.8 riastrad { 153 1.1 ragge double r; 154 1.1 ragge 155 1.8 riastrad *signgamp = 1; 156 1.4 matt #if _IEEE 157 1.1 ragge endian = ((*(int *) &one)) ? 1 : 0; 158 1.4 matt #endif 159 1.1 ragge 160 1.3 matt if (!finite(x)) { 161 1.1 ragge if (_IEEE) 162 1.1 ragge return (x+x); 163 1.1 ragge else return (infnan(EDOM)); 164 1.3 matt } 165 1.1 ragge 166 1.1 ragge if (x > 6 + RIGHT) { 167 1.1 ragge r = large_lgam(x); 168 1.1 ragge return (r); 169 1.1 ragge } else if (x > 1e-16) 170 1.1 ragge return (small_lgam(x)); 171 1.1 ragge else if (x > -1e-16) { 172 1.1 ragge if (x < 0) 173 1.8 riastrad *signgamp = -1, x = -x; 174 1.1 ragge return (-log(x)); 175 1.1 ragge } else 176 1.8 riastrad return (neg_lgam(x, signgamp)); 177 1.1 ragge } 178 1.1 ragge 179 1.1 ragge static double 180 1.1 ragge large_lgam(double x) 181 1.1 ragge { 182 1.1 ragge double z, p, x1; 183 1.1 ragge struct Double t, u, v; 184 1.1 ragge u = __log__D(x); 185 1.1 ragge u.a -= 1.0; 186 1.1 ragge if (x > 1e15) { 187 1.1 ragge v.a = x - 0.5; 188 1.1 ragge TRUNC(v.a); 189 1.1 ragge v.b = (x - v.a) - 0.5; 190 1.1 ragge t.a = u.a*v.a; 191 1.1 ragge t.b = x*u.b + v.b*u.a; 192 1.1 ragge if (_IEEE == 0 && !finite(t.a)) 193 1.1 ragge return(infnan(ERANGE)); 194 1.1 ragge return(t.a + t.b); 195 1.1 ragge } 196 1.1 ragge x1 = 1./x; 197 1.1 ragge z = x1*x1; 198 1.1 ragge p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7)))))); 199 1.1 ragge /* error in approximation = 2.8e-19 */ 200 1.1 ragge 201 1.1 ragge p = p*x1; /* error < 2.3e-18 absolute */ 202 1.1 ragge /* 0 < p < 1/64 (at x = 5.5) */ 203 1.1 ragge v.a = x = x - 0.5; 204 1.1 ragge TRUNC(v.a); /* truncate v.a to 26 bits. */ 205 1.1 ragge v.b = x - v.a; 206 1.1 ragge t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ 207 1.1 ragge t.b = v.b*u.a + x*u.b; 208 1.1 ragge t.b += p; t.b += lns2pi; /* return t + lns2pi + p */ 209 1.1 ragge return (t.a + t.b); 210 1.1 ragge } 211 1.1 ragge 212 1.1 ragge static double 213 1.1 ragge small_lgam(double x) 214 1.1 ragge { 215 1.1 ragge int x_int; 216 1.1 ragge double y, z, t, r = 0, p, q, hi, lo; 217 1.1 ragge struct Double rr; 218 1.1 ragge x_int = (x + .5); 219 1.1 ragge y = x - x_int; 220 1.1 ragge if (x_int <= 2 && y > RIGHT) { 221 1.1 ragge t = y - x0; 222 1.1 ragge y--; x_int++; 223 1.1 ragge goto CONTINUE; 224 1.1 ragge } else if (y < -LEFT) { 225 1.1 ragge t = y +(1.0-x0); 226 1.1 ragge CONTINUE: 227 1.1 ragge z = t - x0_lo; 228 1.1 ragge p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5)))); 229 1.1 ragge q = s0+z*(s1+z*(s2+z*(s3+z*s4))); 230 1.1 ragge r = t*(z*(p/q) - x0_lo); 231 1.1 ragge t = .5*t*t; 232 1.1 ragge z = 1.0; 233 1.1 ragge switch (x_int) { 234 1.7 mrg case 6: z = (y + 5); /* FALLTHROUGH */ 235 1.7 mrg case 5: z *= (y + 4); /* FALLTHROUGH */ 236 1.7 mrg case 4: z *= (y + 3); /* FALLTHROUGH */ 237 1.1 ragge case 3: z *= (y + 2); 238 1.1 ragge rr = __log__D(z); 239 1.1 ragge rr.b += a0_lo; rr.a += a0_hi; 240 1.1 ragge return(((r+rr.b)+t+rr.a)); 241 1.1 ragge case 2: return(((r+a0_lo)+t)+a0_hi); 242 1.7 mrg case 0: r -= log1p(x); /* FALLTHROUGH */ 243 1.1 ragge default: rr = __log__D(x); 244 1.1 ragge rr.a -= a0_hi; rr.b -= a0_lo; 245 1.1 ragge return(((r - rr.b) + t) - rr.a); 246 1.1 ragge } 247 1.1 ragge } else { 248 1.1 ragge p = p0+y*(p1+y*(p2+y*(p3+y*p4))); 249 1.1 ragge q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6))))); 250 1.1 ragge p = p*(y/q); 251 1.1 ragge t = (double)(float) y; 252 1.1 ragge z = y-t; 253 1.1 ragge hi = (double)(float) (p+a1_hi); 254 1.1 ragge lo = a1_hi - hi; lo += p; lo += a1_lo; 255 1.1 ragge r = lo*y + z*hi; /* q + r = y*(a0+p/q) */ 256 1.1 ragge q = hi*t; 257 1.1 ragge z = 1.0; 258 1.1 ragge switch (x_int) { 259 1.7 mrg case 6: z = (y + 5); /* FALLTHROUGH */ 260 1.7 mrg case 5: z *= (y + 4); /* FALLTHROUGH */ 261 1.7 mrg case 4: z *= (y + 3); /* FALLTHROUGH */ 262 1.1 ragge case 3: z *= (y + 2); 263 1.1 ragge rr = __log__D(z); 264 1.1 ragge r += rr.b; r += q; 265 1.1 ragge return(rr.a + r); 266 1.1 ragge case 2: return (q+ r); 267 1.1 ragge case 0: rr = __log__D(x); 268 1.1 ragge r -= rr.b; r -= log1p(x); 269 1.1 ragge r += q; r-= rr.a; 270 1.1 ragge return(r); 271 1.1 ragge default: rr = __log__D(x); 272 1.1 ragge r -= rr.b; 273 1.1 ragge q -= rr.a; 274 1.1 ragge return (r+q); 275 1.1 ragge } 276 1.1 ragge } 277 1.1 ragge } 278 1.1 ragge 279 1.1 ragge static double 280 1.8 riastrad neg_lgam(double x, int *signgamp) 281 1.1 ragge { 282 1.1 ragge int xi; 283 1.4 matt double y, z, zero = 0.0; 284 1.1 ragge 285 1.1 ragge /* avoid destructive cancellation as much as possible */ 286 1.1 ragge if (x > -170) { 287 1.1 ragge xi = x; 288 1.3 matt if (xi == x) { 289 1.1 ragge if (_IEEE) 290 1.1 ragge return(one/zero); 291 1.1 ragge else 292 1.1 ragge return(infnan(ERANGE)); 293 1.3 matt } 294 1.1 ragge y = gamma(x); 295 1.1 ragge if (y < 0) 296 1.8 riastrad y = -y, *signgamp = -1; 297 1.1 ragge return (log(y)); 298 1.1 ragge } 299 1.1 ragge z = floor(x + .5); 300 1.1 ragge if (z == x) { /* convention: G(-(integer)) -> +Inf */ 301 1.1 ragge if (_IEEE) 302 1.1 ragge return (one/zero); 303 1.1 ragge else 304 1.1 ragge return (infnan(ERANGE)); 305 1.1 ragge } 306 1.1 ragge y = .5*ceil(x); 307 1.1 ragge if (y == ceil(y)) 308 1.8 riastrad *signgamp = -1; 309 1.1 ragge x = -x; 310 1.1 ragge z = fabs(x + z); /* 0 < z <= .5 */ 311 1.1 ragge if (z < .25) 312 1.1 ragge z = sin(M_PI*z); 313 1.1 ragge else 314 1.1 ragge z = cos(M_PI*(0.5-z)); 315 1.1 ragge z = log(M_PI/(z*x)); 316 1.1 ragge y = large_lgam(x); 317 1.1 ragge return (z - y); 318 1.1 ragge } 319