Home | History | Annotate | Line # | Download | only in noieee_src
n_lgamma.c revision 1.8
      1  1.8  riastrad /*      $NetBSD: n_lgamma.c,v 1.8 2024/06/09 14:09:27 riastradh Exp $ */
      2  1.1     ragge /*-
      3  1.1     ragge  * Copyright (c) 1992, 1993
      4  1.1     ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1     ragge  *
      6  1.1     ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1     ragge  * modification, are permitted provided that the following conditions
      8  1.1     ragge  * are met:
      9  1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1     ragge  *    documentation and/or other materials provided with the distribution.
     14  1.5       agc  * 3. Neither the name of the University nor the names of its contributors
     15  1.1     ragge  *    may be used to endorse or promote products derived from this software
     16  1.1     ragge  *    without specific prior written permission.
     17  1.1     ragge  *
     18  1.1     ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.1     ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.1     ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  1.1     ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.1     ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.1     ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.1     ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.1     ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1     ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1     ragge  * SUCH DAMAGE.
     29  1.1     ragge  */
     30  1.1     ragge 
     31  1.1     ragge #ifndef lint
     32  1.2     ragge #if 0
     33  1.1     ragge static char sccsid[] = "@(#)lgamma.c	8.2 (Berkeley) 11/30/93";
     34  1.2     ragge #endif
     35  1.1     ragge #endif /* not lint */
     36  1.1     ragge 
     37  1.1     ragge /*
     38  1.1     ragge  * Coded by Peter McIlroy, Nov 1992;
     39  1.1     ragge  *
     40  1.6       wiz  * The financial support of UUNET Communications Services is gratefully
     41  1.1     ragge  * acknowledged.
     42  1.1     ragge  */
     43  1.1     ragge 
     44  1.1     ragge #include <math.h>
     45  1.1     ragge #include <errno.h>
     46  1.1     ragge 
     47  1.1     ragge #include "mathimpl.h"
     48  1.1     ragge 
     49  1.1     ragge /* Log gamma function.
     50  1.1     ragge  * Error:  x > 0 error < 1.3ulp.
     51  1.1     ragge  *	   x > 4, error < 1ulp.
     52  1.1     ragge  *	   x > 9, error < .6ulp.
     53  1.1     ragge  * 	   x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
     54  1.1     ragge  * Method:
     55  1.1     ragge  *	x > 6:
     56  1.1     ragge  *		Use the asymptotic expansion (Stirling's Formula)
     57  1.1     ragge  *	0 < x < 6:
     58  1.1     ragge  *		Use gamma(x+1) = x*gamma(x) for argument reduction.
     59  1.1     ragge  *		Use rational approximation in
     60  1.1     ragge  *		the range 1.2, 2.5
     61  1.1     ragge  *		Two approximations are used, one centered at the
     62  1.1     ragge  *		minimum to ensure monotonicity; one centered at 2
     63  1.1     ragge  *		to maintain small relative error.
     64  1.1     ragge  *	x < 0:
     65  1.1     ragge  *		Use the reflection formula,
     66  1.1     ragge  *		G(1-x)G(x) = PI/sin(PI*x)
     67  1.1     ragge  * Special values:
     68  1.1     ragge  *	non-positive integer	returns +Inf.
     69  1.1     ragge  *	NaN			returns NaN
     70  1.1     ragge */
     71  1.3      matt #if defined(__vax__) || defined(tahoe)
     72  1.1     ragge #define _IEEE		0
     73  1.1     ragge /* double and float have same size exponent field */
     74  1.1     ragge #define TRUNC(x)	x = (double) (float) (x)
     75  1.1     ragge #else
     76  1.4      matt static int endian;
     77  1.1     ragge #define _IEEE		1
     78  1.1     ragge #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     79  1.1     ragge #define infnan(x)	0.0
     80  1.1     ragge #endif
     81  1.1     ragge 
     82  1.1     ragge static double small_lgam(double);
     83  1.1     ragge static double large_lgam(double);
     84  1.8  riastrad static double neg_lgam(double, int *);
     85  1.4      matt static const double one = 1.0;
     86  1.1     ragge int signgam;
     87  1.1     ragge 
     88  1.1     ragge #define UNDERFL (1e-1020 * 1e-1020)
     89  1.1     ragge 
     90  1.1     ragge #define LEFT	(1.0 - (x0 + .25))
     91  1.1     ragge #define RIGHT	(x0 - .218)
     92  1.1     ragge /*
     93  1.2     ragge  * Constants for approximation in [1.244,1.712]
     94  1.1     ragge */
     95  1.1     ragge #define x0	0.461632144968362356785
     96  1.1     ragge #define x0_lo	-.000000000000000015522348162858676890521
     97  1.1     ragge #define a0_hi	-0.12148629128932952880859
     98  1.1     ragge #define a0_lo	.0000000007534799204229502
     99  1.1     ragge #define r0	-2.771227512955130520e-002
    100  1.1     ragge #define r1	-2.980729795228150847e-001
    101  1.1     ragge #define r2	-3.257411333183093394e-001
    102  1.1     ragge #define r3	-1.126814387531706041e-001
    103  1.1     ragge #define r4	-1.129130057170225562e-002
    104  1.1     ragge #define r5	-2.259650588213369095e-005
    105  1.1     ragge #define s0	 1.714457160001714442e+000
    106  1.1     ragge #define s1	 2.786469504618194648e+000
    107  1.1     ragge #define s2	 1.564546365519179805e+000
    108  1.1     ragge #define s3	 3.485846389981109850e-001
    109  1.1     ragge #define s4	 2.467759345363656348e-002
    110  1.1     ragge /*
    111  1.1     ragge  * Constants for approximation in [1.71, 2.5]
    112  1.1     ragge */
    113  1.1     ragge #define a1_hi	4.227843350984671344505727574870e-01
    114  1.1     ragge #define a1_lo	4.670126436531227189e-18
    115  1.1     ragge #define p0	3.224670334241133695662995251041e-01
    116  1.1     ragge #define p1	3.569659696950364669021382724168e-01
    117  1.1     ragge #define p2	1.342918716072560025853732668111e-01
    118  1.1     ragge #define p3	1.950702176409779831089963408886e-02
    119  1.1     ragge #define p4	8.546740251667538090796227834289e-04
    120  1.1     ragge #define q0	1.000000000000000444089209850062e+00
    121  1.1     ragge #define q1	1.315850076960161985084596381057e+00
    122  1.1     ragge #define q2	6.274644311862156431658377186977e-01
    123  1.1     ragge #define q3	1.304706631926259297049597307705e-01
    124  1.1     ragge #define q4	1.102815279606722369265536798366e-02
    125  1.1     ragge #define q5	2.512690594856678929537585620579e-04
    126  1.1     ragge #define q6	-1.003597548112371003358107325598e-06
    127  1.1     ragge /*
    128  1.1     ragge  * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
    129  1.1     ragge */
    130  1.1     ragge #define lns2pi	.418938533204672741780329736405
    131  1.1     ragge #define pb0	 8.33333333333333148296162562474e-02
    132  1.1     ragge #define pb1	-2.77777777774548123579378966497e-03
    133  1.1     ragge #define pb2	 7.93650778754435631476282786423e-04
    134  1.1     ragge #define pb3	-5.95235082566672847950717262222e-04
    135  1.1     ragge #define pb4	 8.41428560346653702135821806252e-04
    136  1.1     ragge #define pb5	-1.89773526463879200348872089421e-03
    137  1.1     ragge #define pb6	 5.69394463439411649408050664078e-03
    138  1.1     ragge #define pb7	-1.44705562421428915453880392761e-02
    139  1.1     ragge 
    140  1.8  riastrad __weak_alias(lgammal, lgamma)
    141  1.8  riastrad __weak_alias(lgammal_r, lgamma_r)
    142  1.8  riastrad 
    143  1.8  riastrad double
    144  1.1     ragge lgamma(double x)
    145  1.1     ragge {
    146  1.8  riastrad 
    147  1.8  riastrad 	return lgamma_r(x, &signgam);
    148  1.8  riastrad }
    149  1.8  riastrad 
    150  1.8  riastrad double
    151  1.8  riastrad lgamma_r(double x, int *signgamp)
    152  1.8  riastrad {
    153  1.1     ragge 	double r;
    154  1.1     ragge 
    155  1.8  riastrad 	*signgamp = 1;
    156  1.4      matt #if _IEEE
    157  1.1     ragge 	endian = ((*(int *) &one)) ? 1 : 0;
    158  1.4      matt #endif
    159  1.1     ragge 
    160  1.3      matt 	if (!finite(x)) {
    161  1.1     ragge 		if (_IEEE)
    162  1.1     ragge 			return (x+x);
    163  1.1     ragge 		else return (infnan(EDOM));
    164  1.3      matt 	}
    165  1.1     ragge 
    166  1.1     ragge 	if (x > 6 + RIGHT) {
    167  1.1     ragge 		r = large_lgam(x);
    168  1.1     ragge 		return (r);
    169  1.1     ragge 	} else if (x > 1e-16)
    170  1.1     ragge 		return (small_lgam(x));
    171  1.1     ragge 	else if (x > -1e-16) {
    172  1.1     ragge 		if (x < 0)
    173  1.8  riastrad 			*signgamp = -1, x = -x;
    174  1.1     ragge 		return (-log(x));
    175  1.1     ragge 	} else
    176  1.8  riastrad 		return (neg_lgam(x, signgamp));
    177  1.1     ragge }
    178  1.1     ragge 
    179  1.1     ragge static double
    180  1.1     ragge large_lgam(double x)
    181  1.1     ragge {
    182  1.1     ragge 	double z, p, x1;
    183  1.1     ragge 	struct Double t, u, v;
    184  1.1     ragge 	u = __log__D(x);
    185  1.1     ragge 	u.a -= 1.0;
    186  1.1     ragge 	if (x > 1e15) {
    187  1.1     ragge 		v.a = x - 0.5;
    188  1.1     ragge 		TRUNC(v.a);
    189  1.1     ragge 		v.b = (x - v.a) - 0.5;
    190  1.1     ragge 		t.a = u.a*v.a;
    191  1.1     ragge 		t.b = x*u.b + v.b*u.a;
    192  1.1     ragge 		if (_IEEE == 0 && !finite(t.a))
    193  1.1     ragge 			return(infnan(ERANGE));
    194  1.1     ragge 		return(t.a + t.b);
    195  1.1     ragge 	}
    196  1.1     ragge 	x1 = 1./x;
    197  1.1     ragge 	z = x1*x1;
    198  1.1     ragge 	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
    199  1.1     ragge 					/* error in approximation = 2.8e-19 */
    200  1.1     ragge 
    201  1.1     ragge 	p = p*x1;			/* error < 2.3e-18 absolute */
    202  1.1     ragge 					/* 0 < p < 1/64 (at x = 5.5) */
    203  1.1     ragge 	v.a = x = x - 0.5;
    204  1.1     ragge 	TRUNC(v.a);			/* truncate v.a to 26 bits. */
    205  1.1     ragge 	v.b = x - v.a;
    206  1.1     ragge 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
    207  1.1     ragge 	t.b = v.b*u.a + x*u.b;
    208  1.1     ragge 	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */
    209  1.1     ragge 	return (t.a + t.b);
    210  1.1     ragge }
    211  1.1     ragge 
    212  1.1     ragge static double
    213  1.1     ragge small_lgam(double x)
    214  1.1     ragge {
    215  1.1     ragge 	int x_int;
    216  1.1     ragge 	double y, z, t, r = 0, p, q, hi, lo;
    217  1.1     ragge 	struct Double rr;
    218  1.1     ragge 	x_int = (x + .5);
    219  1.1     ragge 	y = x - x_int;
    220  1.1     ragge 	if (x_int <= 2 && y > RIGHT) {
    221  1.1     ragge 		t = y - x0;
    222  1.1     ragge 		y--; x_int++;
    223  1.1     ragge 		goto CONTINUE;
    224  1.1     ragge 	} else if (y < -LEFT) {
    225  1.1     ragge 		t = y +(1.0-x0);
    226  1.1     ragge CONTINUE:
    227  1.1     ragge 		z = t - x0_lo;
    228  1.1     ragge 		p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
    229  1.1     ragge 		q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
    230  1.1     ragge 		r = t*(z*(p/q) - x0_lo);
    231  1.1     ragge 		t = .5*t*t;
    232  1.1     ragge 		z = 1.0;
    233  1.1     ragge 		switch (x_int) {
    234  1.7       mrg 		case 6:	z  = (y + 5); /* FALLTHROUGH */
    235  1.7       mrg 		case 5:	z *= (y + 4); /* FALLTHROUGH */
    236  1.7       mrg 		case 4:	z *= (y + 3); /* FALLTHROUGH */
    237  1.1     ragge 		case 3:	z *= (y + 2);
    238  1.1     ragge 			rr = __log__D(z);
    239  1.1     ragge 			rr.b += a0_lo; rr.a += a0_hi;
    240  1.1     ragge 			return(((r+rr.b)+t+rr.a));
    241  1.1     ragge 		case 2: return(((r+a0_lo)+t)+a0_hi);
    242  1.7       mrg 		case 0: r -= log1p(x); /* FALLTHROUGH */
    243  1.1     ragge 		default: rr = __log__D(x);
    244  1.1     ragge 			rr.a -= a0_hi; rr.b -= a0_lo;
    245  1.1     ragge 			return(((r - rr.b) + t) - rr.a);
    246  1.1     ragge 		}
    247  1.1     ragge 	} else {
    248  1.1     ragge 		p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
    249  1.1     ragge 		q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
    250  1.1     ragge 		p = p*(y/q);
    251  1.1     ragge 		t = (double)(float) y;
    252  1.1     ragge 		z = y-t;
    253  1.1     ragge 		hi = (double)(float) (p+a1_hi);
    254  1.1     ragge 		lo = a1_hi - hi; lo += p; lo += a1_lo;
    255  1.1     ragge 		r = lo*y + z*hi;	/* q + r = y*(a0+p/q) */
    256  1.1     ragge 		q = hi*t;
    257  1.1     ragge 		z = 1.0;
    258  1.1     ragge 		switch (x_int) {
    259  1.7       mrg 		case 6:	z  = (y + 5); /* FALLTHROUGH */
    260  1.7       mrg 		case 5:	z *= (y + 4); /* FALLTHROUGH */
    261  1.7       mrg 		case 4:	z *= (y + 3); /* FALLTHROUGH */
    262  1.1     ragge 		case 3:	z *= (y + 2);
    263  1.1     ragge 			rr = __log__D(z);
    264  1.1     ragge 			r += rr.b; r += q;
    265  1.1     ragge 			return(rr.a + r);
    266  1.1     ragge 		case 2:	return (q+ r);
    267  1.1     ragge 		case 0: rr = __log__D(x);
    268  1.1     ragge 			r -= rr.b; r -= log1p(x);
    269  1.1     ragge 			r += q; r-= rr.a;
    270  1.1     ragge 			return(r);
    271  1.1     ragge 		default: rr = __log__D(x);
    272  1.1     ragge 			r -= rr.b;
    273  1.1     ragge 			q -= rr.a;
    274  1.1     ragge 			return (r+q);
    275  1.1     ragge 		}
    276  1.1     ragge 	}
    277  1.1     ragge }
    278  1.1     ragge 
    279  1.1     ragge static double
    280  1.8  riastrad neg_lgam(double x, int *signgamp)
    281  1.1     ragge {
    282  1.1     ragge 	int xi;
    283  1.4      matt 	double y, z, zero = 0.0;
    284  1.1     ragge 
    285  1.1     ragge 	/* avoid destructive cancellation as much as possible */
    286  1.1     ragge 	if (x > -170) {
    287  1.1     ragge 		xi = x;
    288  1.3      matt 		if (xi == x) {
    289  1.1     ragge 			if (_IEEE)
    290  1.1     ragge 				return(one/zero);
    291  1.1     ragge 			else
    292  1.1     ragge 				return(infnan(ERANGE));
    293  1.3      matt 		}
    294  1.1     ragge 		y = gamma(x);
    295  1.1     ragge 		if (y < 0)
    296  1.8  riastrad 			y = -y, *signgamp = -1;
    297  1.1     ragge 		return (log(y));
    298  1.1     ragge 	}
    299  1.1     ragge 	z = floor(x + .5);
    300  1.1     ragge 	if (z == x) {		/* convention: G(-(integer)) -> +Inf */
    301  1.1     ragge 		if (_IEEE)
    302  1.1     ragge 			return (one/zero);
    303  1.1     ragge 		else
    304  1.1     ragge 			return (infnan(ERANGE));
    305  1.1     ragge 	}
    306  1.1     ragge 	y = .5*ceil(x);
    307  1.1     ragge 	if (y == ceil(y))
    308  1.8  riastrad 		*signgamp = -1;
    309  1.1     ragge 	x = -x;
    310  1.1     ragge 	z = fabs(x + z);	/* 0 < z <= .5 */
    311  1.1     ragge 	if (z < .25)
    312  1.1     ragge 		z = sin(M_PI*z);
    313  1.1     ragge 	else
    314  1.1     ragge 		z = cos(M_PI*(0.5-z));
    315  1.1     ragge 	z = log(M_PI/(z*x));
    316  1.1     ragge 	y = large_lgam(x);
    317  1.1     ragge 	return (z - y);
    318  1.1     ragge }
    319