1 1.9 riastrad /* $NetBSD: n_log1p.c,v 1.9 2024/07/16 14:52:50 riastradh Exp $ */ 2 1.1 ragge /* 3 1.1 ragge * Copyright (c) 1985, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.6 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge */ 30 1.1 ragge 31 1.9 riastrad #include <sys/cdefs.h> 32 1.9 riastrad __RCSID("$NetBSD: n_log1p.c,v 1.9 2024/07/16 14:52:50 riastradh Exp $"); 33 1.9 riastrad 34 1.1 ragge #ifndef lint 35 1.2 ragge #if 0 36 1.1 ragge static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93"; 37 1.2 ragge #endif 38 1.1 ragge #endif /* not lint */ 39 1.1 ragge 40 1.4 simonb /* LOG1P(x) 41 1.1 ragge * RETURN THE LOGARITHM OF 1+x 42 1.1 ragge * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS) 43 1.4 simonb * CODED IN C BY K.C. NG, 1/19/85; 44 1.1 ragge * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85. 45 1.4 simonb * 46 1.1 ragge * Required system supported functions: 47 1.4 simonb * scalb(x,n) 48 1.1 ragge * copysign(x,y) 49 1.4 simonb * logb(x) 50 1.1 ragge * finite(x) 51 1.1 ragge * 52 1.1 ragge * Required kernel function: 53 1.1 ragge * log__L(z) 54 1.1 ragge * 55 1.1 ragge * Method : 56 1.4 simonb * 1. Argument Reduction: find k and f such that 57 1.4 simonb * 1+x = 2^k * (1+f), 58 1.1 ragge * where sqrt(2)/2 < 1+f < sqrt(2) . 59 1.1 ragge * 60 1.1 ragge * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 61 1.1 ragge * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 62 1.1 ragge * log(1+f) is computed by 63 1.1 ragge * 64 1.1 ragge * log(1+f) = 2s + s*log__L(s*s) 65 1.1 ragge * where 66 1.1 ragge * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) 67 1.1 ragge * 68 1.1 ragge * See log__L() for the values of the coefficients. 69 1.1 ragge * 70 1.4 simonb * 3. Finally, log(1+x) = k*ln2 + log(1+f). 71 1.1 ragge * 72 1.1 ragge * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers 73 1.4 simonb * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last 74 1.4 simonb * 20 bits (for VAX D format), or the last 21 bits ( for IEEE 75 1.1 ragge * double) is 0. This ensures n*ln2hi is exactly representable. 76 1.1 ragge * 2. In step 1, f may not be representable. A correction term c 77 1.1 ragge * for f is computed. It follows that the correction term for 78 1.1 ragge * f - t (the leading term of log(1+f) in step 2) is c-c*x. We 79 1.1 ragge * add this correction term to n*ln2lo to attenuate the error. 80 1.1 ragge * 81 1.1 ragge * 82 1.1 ragge * Special cases: 83 1.1 ragge * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; 84 1.1 ragge * log1p(INF) is +INF; log1p(-1) is -INF with signal; 85 1.1 ragge * only log1p(0)=0 is exact for finite argument. 86 1.1 ragge * 87 1.1 ragge * Accuracy: 88 1.4 simonb * log1p(x) returns the exact log(1+x) nearly rounded. In a test run 89 1.1 ragge * with 1,536,000 random arguments on a VAX, the maximum observed 90 1.1 ragge * error was .846 ulps (units in the last place). 91 1.1 ragge * 92 1.1 ragge * Constants: 93 1.1 ragge * The hexadecimal values are the intended ones for the following constants. 94 1.1 ragge * The decimal values may be used, provided that the compiler will convert 95 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values 96 1.1 ragge * shown. 97 1.1 ragge */ 98 1.1 ragge 99 1.9 riastrad #include "namespace.h" 100 1.9 riastrad 101 1.1 ragge #include <errno.h> 102 1.5 matt #define _LIBM_STATIC 103 1.1 ragge #include "mathimpl.h" 104 1.1 ragge 105 1.9 riastrad __weak_alias(log1pl, _log1pl) 106 1.9 riastrad __strong_alias(_log1pl, _log1p) 107 1.9 riastrad 108 1.1 ragge vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 109 1.1 ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 110 1.1 ragge vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65) 111 1.1 ragge 112 1.1 ragge ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 113 1.1 ragge ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76) 114 1.1 ragge ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD) 115 1.1 ragge 116 1.1 ragge #ifdef vccast 117 1.1 ragge #define ln2hi vccast(ln2hi) 118 1.1 ragge #define ln2lo vccast(ln2lo) 119 1.1 ragge #define sqrt2 vccast(sqrt2) 120 1.1 ragge #endif 121 1.1 ragge 122 1.9 riastrad __weak_alias(log1p, _log1p) 123 1.5 matt double 124 1.5 matt log1p(double x) 125 1.1 ragge { 126 1.7 uwe static const double zero=0.0, negone= -1.0, one=1.0, 127 1.1 ragge half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ 128 1.1 ragge double z,s,t,c; 129 1.1 ragge int k; 130 1.1 ragge 131 1.3 matt #if !defined(__vax__)&&!defined(tahoe) 132 1.1 ragge if(x!=x) return(x); /* x is NaN */ 133 1.3 matt #endif /* !defined(__vax__)&&!defined(tahoe) */ 134 1.1 ragge 135 1.1 ragge if(finite(x)) { 136 1.1 ragge if( x > negone ) { 137 1.1 ragge 138 1.1 ragge /* argument reduction */ 139 1.1 ragge if(copysign(x,one)<small) return(x); 140 1.1 ragge k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k); 141 1.4 simonb if(z+t >= sqrt2 ) 142 1.1 ragge { k += 1 ; z *= half; t *= half; } 143 1.1 ragge t += negone; x = z + t; 144 1.1 ragge c = (t-x)+z ; /* correction term for x */ 145 1.1 ragge 146 1.1 ragge /* compute log(1+x) */ 147 1.1 ragge s = x/(2+x); t = x*x*half; 148 1.1 ragge c += (k*ln2lo-c*x); 149 1.1 ragge z = c+s*(t+__log__L(s*s)); 150 1.1 ragge x += (z - t) ; 151 1.1 ragge 152 1.1 ragge return(k*ln2hi+x); 153 1.1 ragge } 154 1.1 ragge /* end of if (x > negone) */ 155 1.1 ragge 156 1.1 ragge else { 157 1.3 matt #if defined(__vax__)||defined(tahoe) 158 1.1 ragge if ( x == negone ) 159 1.1 ragge return (infnan(-ERANGE)); /* -INF */ 160 1.1 ragge else 161 1.1 ragge return (infnan(EDOM)); /* NaN */ 162 1.3 matt #else /* defined(__vax__)||defined(tahoe) */ 163 1.1 ragge /* x = -1, return -INF with signal */ 164 1.1 ragge if ( x == negone ) return( negone/zero ); 165 1.1 ragge 166 1.1 ragge /* negative argument for log, return NaN with signal */ 167 1.1 ragge else return ( zero / zero ); 168 1.3 matt #endif /* defined(__vax__)||defined(tahoe) */ 169 1.1 ragge } 170 1.1 ragge } 171 1.1 ragge /* end of if (finite(x)) */ 172 1.1 ragge 173 1.1 ragge /* log(-INF) is NaN */ 174 1.4 simonb else if(x<0) 175 1.1 ragge return(zero/zero); 176 1.1 ragge 177 1.1 ragge /* log(+INF) is INF */ 178 1.4 simonb else return(x); 179 1.1 ragge } 180 1.8 martin 181 1.9 riastrad __weak_alias(log1pf, _log1pf) 182 1.8 martin float 183 1.8 martin log1pf(float x) 184 1.8 martin { 185 1.8 martin return log1p(x); 186 1.8 martin } 187