n_log1p.c revision 1.2 1 1.2 ragge /* $NetBSD: n_log1p.c,v 1.2 1997/10/20 14:13:15 ragge Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge /* LOG1P(x)
42 1.1 ragge * RETURN THE LOGARITHM OF 1+x
43 1.1 ragge * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
44 1.1 ragge * CODED IN C BY K.C. NG, 1/19/85;
45 1.1 ragge * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
46 1.1 ragge *
47 1.1 ragge * Required system supported functions:
48 1.1 ragge * scalb(x,n)
49 1.1 ragge * copysign(x,y)
50 1.1 ragge * logb(x)
51 1.1 ragge * finite(x)
52 1.1 ragge *
53 1.1 ragge * Required kernel function:
54 1.1 ragge * log__L(z)
55 1.1 ragge *
56 1.1 ragge * Method :
57 1.1 ragge * 1. Argument Reduction: find k and f such that
58 1.1 ragge * 1+x = 2^k * (1+f),
59 1.1 ragge * where sqrt(2)/2 < 1+f < sqrt(2) .
60 1.1 ragge *
61 1.1 ragge * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
62 1.1 ragge * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
63 1.1 ragge * log(1+f) is computed by
64 1.1 ragge *
65 1.1 ragge * log(1+f) = 2s + s*log__L(s*s)
66 1.1 ragge * where
67 1.1 ragge * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
68 1.1 ragge *
69 1.1 ragge * See log__L() for the values of the coefficients.
70 1.1 ragge *
71 1.1 ragge * 3. Finally, log(1+x) = k*ln2 + log(1+f).
72 1.1 ragge *
73 1.1 ragge * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
74 1.1 ragge * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
75 1.1 ragge * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
76 1.1 ragge * double) is 0. This ensures n*ln2hi is exactly representable.
77 1.1 ragge * 2. In step 1, f may not be representable. A correction term c
78 1.1 ragge * for f is computed. It follows that the correction term for
79 1.1 ragge * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
80 1.1 ragge * add this correction term to n*ln2lo to attenuate the error.
81 1.1 ragge *
82 1.1 ragge *
83 1.1 ragge * Special cases:
84 1.1 ragge * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
85 1.1 ragge * log1p(INF) is +INF; log1p(-1) is -INF with signal;
86 1.1 ragge * only log1p(0)=0 is exact for finite argument.
87 1.1 ragge *
88 1.1 ragge * Accuracy:
89 1.1 ragge * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
90 1.1 ragge * with 1,536,000 random arguments on a VAX, the maximum observed
91 1.1 ragge * error was .846 ulps (units in the last place).
92 1.1 ragge *
93 1.1 ragge * Constants:
94 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
95 1.1 ragge * The decimal values may be used, provided that the compiler will convert
96 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
97 1.1 ragge * shown.
98 1.1 ragge */
99 1.1 ragge
100 1.1 ragge #include <errno.h>
101 1.1 ragge #include "mathimpl.h"
102 1.1 ragge
103 1.1 ragge vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
104 1.1 ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
105 1.1 ragge vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
106 1.1 ragge
107 1.1 ragge ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
108 1.1 ragge ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
109 1.1 ragge ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)
110 1.1 ragge
111 1.1 ragge #ifdef vccast
112 1.1 ragge #define ln2hi vccast(ln2hi)
113 1.1 ragge #define ln2lo vccast(ln2lo)
114 1.1 ragge #define sqrt2 vccast(sqrt2)
115 1.1 ragge #endif
116 1.1 ragge
117 1.1 ragge double log1p(x)
118 1.1 ragge double x;
119 1.1 ragge {
120 1.1 ragge const static double zero=0.0, negone= -1.0, one=1.0,
121 1.1 ragge half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
122 1.1 ragge double z,s,t,c;
123 1.1 ragge int k;
124 1.1 ragge
125 1.1 ragge #if !defined(vax)&&!defined(tahoe)
126 1.1 ragge if(x!=x) return(x); /* x is NaN */
127 1.1 ragge #endif /* !defined(vax)&&!defined(tahoe) */
128 1.1 ragge
129 1.1 ragge if(finite(x)) {
130 1.1 ragge if( x > negone ) {
131 1.1 ragge
132 1.1 ragge /* argument reduction */
133 1.1 ragge if(copysign(x,one)<small) return(x);
134 1.1 ragge k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
135 1.1 ragge if(z+t >= sqrt2 )
136 1.1 ragge { k += 1 ; z *= half; t *= half; }
137 1.1 ragge t += negone; x = z + t;
138 1.1 ragge c = (t-x)+z ; /* correction term for x */
139 1.1 ragge
140 1.1 ragge /* compute log(1+x) */
141 1.1 ragge s = x/(2+x); t = x*x*half;
142 1.1 ragge c += (k*ln2lo-c*x);
143 1.1 ragge z = c+s*(t+__log__L(s*s));
144 1.1 ragge x += (z - t) ;
145 1.1 ragge
146 1.1 ragge return(k*ln2hi+x);
147 1.1 ragge }
148 1.1 ragge /* end of if (x > negone) */
149 1.1 ragge
150 1.1 ragge else {
151 1.1 ragge #if defined(vax)||defined(tahoe)
152 1.1 ragge if ( x == negone )
153 1.1 ragge return (infnan(-ERANGE)); /* -INF */
154 1.1 ragge else
155 1.1 ragge return (infnan(EDOM)); /* NaN */
156 1.1 ragge #else /* defined(vax)||defined(tahoe) */
157 1.1 ragge /* x = -1, return -INF with signal */
158 1.1 ragge if ( x == negone ) return( negone/zero );
159 1.1 ragge
160 1.1 ragge /* negative argument for log, return NaN with signal */
161 1.1 ragge else return ( zero / zero );
162 1.1 ragge #endif /* defined(vax)||defined(tahoe) */
163 1.1 ragge }
164 1.1 ragge }
165 1.1 ragge /* end of if (finite(x)) */
166 1.1 ragge
167 1.1 ragge /* log(-INF) is NaN */
168 1.1 ragge else if(x<0)
169 1.1 ragge return(zero/zero);
170 1.1 ragge
171 1.1 ragge /* log(+INF) is INF */
172 1.1 ragge else return(x);
173 1.1 ragge }
174