Home | History | Annotate | Line # | Download | only in noieee_src
n_log1p.c revision 1.7.26.1
      1  1.7.26.1     tls /*      $NetBSD: n_log1p.c,v 1.7.26.1 2014/08/20 00:02:18 tls Exp $ */
      2       1.1   ragge /*
      3       1.1   ragge  * Copyright (c) 1985, 1993
      4       1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5       1.1   ragge  *
      6       1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7       1.1   ragge  * modification, are permitted provided that the following conditions
      8       1.1   ragge  * are met:
      9       1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10       1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11       1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14       1.6     agc  * 3. Neither the name of the University nor the names of its contributors
     15       1.1   ragge  *    may be used to endorse or promote products derived from this software
     16       1.1   ragge  *    without specific prior written permission.
     17       1.1   ragge  *
     18       1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19       1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20       1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21       1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22       1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23       1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24       1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25       1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26       1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27       1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28       1.1   ragge  * SUCH DAMAGE.
     29       1.1   ragge  */
     30       1.1   ragge 
     31       1.1   ragge #ifndef lint
     32       1.2   ragge #if 0
     33       1.1   ragge static char sccsid[] = "@(#)log1p.c	8.1 (Berkeley) 6/4/93";
     34       1.2   ragge #endif
     35       1.1   ragge #endif /* not lint */
     36       1.1   ragge 
     37       1.4  simonb /* LOG1P(x)
     38       1.1   ragge  * RETURN THE LOGARITHM OF 1+x
     39       1.1   ragge  * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
     40       1.4  simonb  * CODED IN C BY K.C. NG, 1/19/85;
     41       1.1   ragge  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
     42       1.4  simonb  *
     43       1.1   ragge  * Required system supported functions:
     44       1.4  simonb  *	scalb(x,n)
     45       1.1   ragge  *	copysign(x,y)
     46       1.4  simonb  *	logb(x)
     47       1.1   ragge  *	finite(x)
     48       1.1   ragge  *
     49       1.1   ragge  * Required kernel function:
     50       1.1   ragge  *	log__L(z)
     51       1.1   ragge  *
     52       1.1   ragge  * Method :
     53       1.4  simonb  *	1. Argument Reduction: find k and f such that
     54       1.4  simonb  *			1+x  = 2^k * (1+f),
     55       1.1   ragge  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
     56       1.1   ragge  *
     57       1.1   ragge  *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
     58       1.1   ragge  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
     59       1.1   ragge  *	   log(1+f) is computed by
     60       1.1   ragge  *
     61       1.1   ragge  *	     		log(1+f) = 2s + s*log__L(s*s)
     62       1.1   ragge  *	   where
     63       1.1   ragge  *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
     64       1.1   ragge  *
     65       1.1   ragge  *	   See log__L() for the values of the coefficients.
     66       1.1   ragge  *
     67       1.4  simonb  *	3. Finally,  log(1+x) = k*ln2 + log(1+f).
     68       1.1   ragge  *
     69       1.1   ragge  *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
     70       1.4  simonb  *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
     71       1.4  simonb  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE
     72       1.1   ragge  *		   double) is 0. This ensures n*ln2hi is exactly representable.
     73       1.1   ragge  *		2. In step 1, f may not be representable. A correction term c
     74       1.1   ragge  *	 	   for f is computed. It follows that the correction term for
     75       1.1   ragge  *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
     76       1.1   ragge  *		   add this correction term to n*ln2lo to attenuate the error.
     77       1.1   ragge  *
     78       1.1   ragge  *
     79       1.1   ragge  * Special cases:
     80       1.1   ragge  *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
     81       1.1   ragge  *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
     82       1.1   ragge  *	only log1p(0)=0 is exact for finite argument.
     83       1.1   ragge  *
     84       1.1   ragge  * Accuracy:
     85       1.4  simonb  *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run
     86       1.1   ragge  *	with 1,536,000 random arguments on a VAX, the maximum observed
     87       1.1   ragge  *	error was .846 ulps (units in the last place).
     88       1.1   ragge  *
     89       1.1   ragge  * Constants:
     90       1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
     91       1.1   ragge  * The decimal values may be used, provided that the compiler will convert
     92       1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
     93       1.1   ragge  * shown.
     94       1.1   ragge  */
     95       1.1   ragge 
     96       1.1   ragge #include <errno.h>
     97       1.5    matt #define _LIBM_STATIC
     98       1.1   ragge #include "mathimpl.h"
     99       1.1   ragge 
    100       1.1   ragge vc(ln2hi, 6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
    101       1.1   ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
    102       1.1   ragge vc(sqrt2, 1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
    103       1.1   ragge 
    104       1.1   ragge ic(ln2hi, 6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
    105       1.1   ragge ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
    106       1.1   ragge ic(sqrt2, 1.4142135623730951455E0,     0, 1.6A09E667F3BCD)
    107       1.1   ragge 
    108       1.1   ragge #ifdef vccast
    109       1.1   ragge #define	ln2hi	vccast(ln2hi)
    110       1.1   ragge #define	ln2lo	vccast(ln2lo)
    111       1.1   ragge #define	sqrt2	vccast(sqrt2)
    112       1.1   ragge #endif
    113       1.1   ragge 
    114       1.5    matt double
    115       1.5    matt log1p(double x)
    116       1.1   ragge {
    117       1.7     uwe 	static const double zero=0.0, negone= -1.0, one=1.0,
    118       1.1   ragge 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
    119       1.1   ragge 	double z,s,t,c;
    120       1.1   ragge 	int k;
    121       1.1   ragge 
    122       1.3    matt #if !defined(__vax__)&&!defined(tahoe)
    123       1.1   ragge 	if(x!=x) return(x);	/* x is NaN */
    124       1.3    matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    125       1.1   ragge 
    126       1.1   ragge 	if(finite(x)) {
    127       1.1   ragge 	   if( x > negone ) {
    128       1.1   ragge 
    129       1.1   ragge 	   /* argument reduction */
    130       1.1   ragge 	      if(copysign(x,one)<small) return(x);
    131       1.1   ragge 	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
    132       1.4  simonb 	      if(z+t >= sqrt2 )
    133       1.1   ragge 		  { k += 1 ; z *= half; t *= half; }
    134       1.1   ragge 	      t += negone; x = z + t;
    135       1.1   ragge 	      c = (t-x)+z ;		/* correction term for x */
    136       1.1   ragge 
    137       1.1   ragge  	   /* compute log(1+x)  */
    138       1.1   ragge               s = x/(2+x); t = x*x*half;
    139       1.1   ragge 	      c += (k*ln2lo-c*x);
    140       1.1   ragge 	      z = c+s*(t+__log__L(s*s));
    141       1.1   ragge 	      x += (z - t) ;
    142       1.1   ragge 
    143       1.1   ragge 	      return(k*ln2hi+x);
    144       1.1   ragge 	   }
    145       1.1   ragge 	/* end of if (x > negone) */
    146       1.1   ragge 
    147       1.1   ragge 	    else {
    148       1.3    matt #if defined(__vax__)||defined(tahoe)
    149       1.1   ragge 		if ( x == negone )
    150       1.1   ragge 		    return (infnan(-ERANGE));	/* -INF */
    151       1.1   ragge 		else
    152       1.1   ragge 		    return (infnan(EDOM));	/* NaN */
    153       1.3    matt #else	/* defined(__vax__)||defined(tahoe) */
    154       1.1   ragge 		/* x = -1, return -INF with signal */
    155       1.1   ragge 		if ( x == negone ) return( negone/zero );
    156       1.1   ragge 
    157       1.1   ragge 		/* negative argument for log, return NaN with signal */
    158       1.1   ragge 	        else return ( zero / zero );
    159       1.3    matt #endif	/* defined(__vax__)||defined(tahoe) */
    160       1.1   ragge 	    }
    161       1.1   ragge 	}
    162       1.1   ragge     /* end of if (finite(x)) */
    163       1.1   ragge 
    164       1.1   ragge     /* log(-INF) is NaN */
    165       1.4  simonb 	else if(x<0)
    166       1.1   ragge 	     return(zero/zero);
    167       1.1   ragge 
    168       1.1   ragge     /* log(+INF) is INF */
    169       1.4  simonb 	else return(x);
    170       1.1   ragge }
    171  1.7.26.1     tls 
    172  1.7.26.1     tls float
    173  1.7.26.1     tls log1pf(float x)
    174  1.7.26.1     tls {
    175  1.7.26.1     tls 	return log1p(x);
    176  1.7.26.1     tls }
    177