n_log1p.c revision 1.1 1 /* $NetBSD: n_log1p.c,v 1.1 1995/10/10 23:37:00 ragge Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
37 #endif /* not lint */
38
39 /* LOG1P(x)
40 * RETURN THE LOGARITHM OF 1+x
41 * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
42 * CODED IN C BY K.C. NG, 1/19/85;
43 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
44 *
45 * Required system supported functions:
46 * scalb(x,n)
47 * copysign(x,y)
48 * logb(x)
49 * finite(x)
50 *
51 * Required kernel function:
52 * log__L(z)
53 *
54 * Method :
55 * 1. Argument Reduction: find k and f such that
56 * 1+x = 2^k * (1+f),
57 * where sqrt(2)/2 < 1+f < sqrt(2) .
58 *
59 * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
60 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
61 * log(1+f) is computed by
62 *
63 * log(1+f) = 2s + s*log__L(s*s)
64 * where
65 * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
66 *
67 * See log__L() for the values of the coefficients.
68 *
69 * 3. Finally, log(1+x) = k*ln2 + log(1+f).
70 *
71 * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
72 * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
73 * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
74 * double) is 0. This ensures n*ln2hi is exactly representable.
75 * 2. In step 1, f may not be representable. A correction term c
76 * for f is computed. It follows that the correction term for
77 * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
78 * add this correction term to n*ln2lo to attenuate the error.
79 *
80 *
81 * Special cases:
82 * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
83 * log1p(INF) is +INF; log1p(-1) is -INF with signal;
84 * only log1p(0)=0 is exact for finite argument.
85 *
86 * Accuracy:
87 * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
88 * with 1,536,000 random arguments on a VAX, the maximum observed
89 * error was .846 ulps (units in the last place).
90 *
91 * Constants:
92 * The hexadecimal values are the intended ones for the following constants.
93 * The decimal values may be used, provided that the compiler will convert
94 * from decimal to binary accurately enough to produce the hexadecimal values
95 * shown.
96 */
97
98 #include <errno.h>
99 #include "mathimpl.h"
100
101 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
102 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
103 vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
104
105 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
106 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
107 ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)
108
109 #ifdef vccast
110 #define ln2hi vccast(ln2hi)
111 #define ln2lo vccast(ln2lo)
112 #define sqrt2 vccast(sqrt2)
113 #endif
114
115 double log1p(x)
116 double x;
117 {
118 const static double zero=0.0, negone= -1.0, one=1.0,
119 half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
120 double z,s,t,c;
121 int k;
122
123 #if !defined(vax)&&!defined(tahoe)
124 if(x!=x) return(x); /* x is NaN */
125 #endif /* !defined(vax)&&!defined(tahoe) */
126
127 if(finite(x)) {
128 if( x > negone ) {
129
130 /* argument reduction */
131 if(copysign(x,one)<small) return(x);
132 k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
133 if(z+t >= sqrt2 )
134 { k += 1 ; z *= half; t *= half; }
135 t += negone; x = z + t;
136 c = (t-x)+z ; /* correction term for x */
137
138 /* compute log(1+x) */
139 s = x/(2+x); t = x*x*half;
140 c += (k*ln2lo-c*x);
141 z = c+s*(t+__log__L(s*s));
142 x += (z - t) ;
143
144 return(k*ln2hi+x);
145 }
146 /* end of if (x > negone) */
147
148 else {
149 #if defined(vax)||defined(tahoe)
150 if ( x == negone )
151 return (infnan(-ERANGE)); /* -INF */
152 else
153 return (infnan(EDOM)); /* NaN */
154 #else /* defined(vax)||defined(tahoe) */
155 /* x = -1, return -INF with signal */
156 if ( x == negone ) return( negone/zero );
157
158 /* negative argument for log, return NaN with signal */
159 else return ( zero / zero );
160 #endif /* defined(vax)||defined(tahoe) */
161 }
162 }
163 /* end of if (finite(x)) */
164
165 /* log(-INF) is NaN */
166 else if(x<0)
167 return(zero/zero);
168
169 /* log(+INF) is INF */
170 else return(x);
171 }
172