Home | History | Annotate | Line # | Download | only in noieee_src
n_log1p.c revision 1.2
      1 /*      $NetBSD: n_log1p.c,v 1.2 1997/10/20 14:13:15 ragge Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)log1p.c	8.1 (Berkeley) 6/4/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 /* LOG1P(x)
     42  * RETURN THE LOGARITHM OF 1+x
     43  * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
     44  * CODED IN C BY K.C. NG, 1/19/85;
     45  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
     46  *
     47  * Required system supported functions:
     48  *	scalb(x,n)
     49  *	copysign(x,y)
     50  *	logb(x)
     51  *	finite(x)
     52  *
     53  * Required kernel function:
     54  *	log__L(z)
     55  *
     56  * Method :
     57  *	1. Argument Reduction: find k and f such that
     58  *			1+x  = 2^k * (1+f),
     59  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
     60  *
     61  *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
     62  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
     63  *	   log(1+f) is computed by
     64  *
     65  *	     		log(1+f) = 2s + s*log__L(s*s)
     66  *	   where
     67  *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
     68  *
     69  *	   See log__L() for the values of the coefficients.
     70  *
     71  *	3. Finally,  log(1+x) = k*ln2 + log(1+f).
     72  *
     73  *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
     74  *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
     75  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE
     76  *		   double) is 0. This ensures n*ln2hi is exactly representable.
     77  *		2. In step 1, f may not be representable. A correction term c
     78  *	 	   for f is computed. It follows that the correction term for
     79  *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
     80  *		   add this correction term to n*ln2lo to attenuate the error.
     81  *
     82  *
     83  * Special cases:
     84  *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
     85  *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
     86  *	only log1p(0)=0 is exact for finite argument.
     87  *
     88  * Accuracy:
     89  *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run
     90  *	with 1,536,000 random arguments on a VAX, the maximum observed
     91  *	error was .846 ulps (units in the last place).
     92  *
     93  * Constants:
     94  * The hexadecimal values are the intended ones for the following constants.
     95  * The decimal values may be used, provided that the compiler will convert
     96  * from decimal to binary accurately enough to produce the hexadecimal values
     97  * shown.
     98  */
     99 
    100 #include <errno.h>
    101 #include "mathimpl.h"
    102 
    103 vc(ln2hi, 6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
    104 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
    105 vc(sqrt2, 1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
    106 
    107 ic(ln2hi, 6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
    108 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
    109 ic(sqrt2, 1.4142135623730951455E0,     0, 1.6A09E667F3BCD)
    110 
    111 #ifdef vccast
    112 #define	ln2hi	vccast(ln2hi)
    113 #define	ln2lo	vccast(ln2lo)
    114 #define	sqrt2	vccast(sqrt2)
    115 #endif
    116 
    117 double log1p(x)
    118 double x;
    119 {
    120 	const static double zero=0.0, negone= -1.0, one=1.0,
    121 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
    122 	double z,s,t,c;
    123 	int k;
    124 
    125 #if !defined(vax)&&!defined(tahoe)
    126 	if(x!=x) return(x);	/* x is NaN */
    127 #endif	/* !defined(vax)&&!defined(tahoe) */
    128 
    129 	if(finite(x)) {
    130 	   if( x > negone ) {
    131 
    132 	   /* argument reduction */
    133 	      if(copysign(x,one)<small) return(x);
    134 	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
    135 	      if(z+t >= sqrt2 )
    136 		  { k += 1 ; z *= half; t *= half; }
    137 	      t += negone; x = z + t;
    138 	      c = (t-x)+z ;		/* correction term for x */
    139 
    140  	   /* compute log(1+x)  */
    141               s = x/(2+x); t = x*x*half;
    142 	      c += (k*ln2lo-c*x);
    143 	      z = c+s*(t+__log__L(s*s));
    144 	      x += (z - t) ;
    145 
    146 	      return(k*ln2hi+x);
    147 	   }
    148 	/* end of if (x > negone) */
    149 
    150 	    else {
    151 #if defined(vax)||defined(tahoe)
    152 		if ( x == negone )
    153 		    return (infnan(-ERANGE));	/* -INF */
    154 		else
    155 		    return (infnan(EDOM));	/* NaN */
    156 #else	/* defined(vax)||defined(tahoe) */
    157 		/* x = -1, return -INF with signal */
    158 		if ( x == negone ) return( negone/zero );
    159 
    160 		/* negative argument for log, return NaN with signal */
    161 	        else return ( zero / zero );
    162 #endif	/* defined(vax)||defined(tahoe) */
    163 	    }
    164 	}
    165     /* end of if (finite(x)) */
    166 
    167     /* log(-INF) is NaN */
    168 	else if(x<0)
    169 	     return(zero/zero);
    170 
    171     /* log(+INF) is INF */
    172 	else return(x);
    173 }
    174