n_log1p.c revision 1.3 1 /* $NetBSD: n_log1p.c,v 1.3 1998/10/20 02:26:12 matt Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";
38 #endif
39 #endif /* not lint */
40
41 /* LOG1P(x)
42 * RETURN THE LOGARITHM OF 1+x
43 * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
44 * CODED IN C BY K.C. NG, 1/19/85;
45 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
46 *
47 * Required system supported functions:
48 * scalb(x,n)
49 * copysign(x,y)
50 * logb(x)
51 * finite(x)
52 *
53 * Required kernel function:
54 * log__L(z)
55 *
56 * Method :
57 * 1. Argument Reduction: find k and f such that
58 * 1+x = 2^k * (1+f),
59 * where sqrt(2)/2 < 1+f < sqrt(2) .
60 *
61 * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
62 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
63 * log(1+f) is computed by
64 *
65 * log(1+f) = 2s + s*log__L(s*s)
66 * where
67 * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
68 *
69 * See log__L() for the values of the coefficients.
70 *
71 * 3. Finally, log(1+x) = k*ln2 + log(1+f).
72 *
73 * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
74 * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
75 * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
76 * double) is 0. This ensures n*ln2hi is exactly representable.
77 * 2. In step 1, f may not be representable. A correction term c
78 * for f is computed. It follows that the correction term for
79 * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
80 * add this correction term to n*ln2lo to attenuate the error.
81 *
82 *
83 * Special cases:
84 * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
85 * log1p(INF) is +INF; log1p(-1) is -INF with signal;
86 * only log1p(0)=0 is exact for finite argument.
87 *
88 * Accuracy:
89 * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
90 * with 1,536,000 random arguments on a VAX, the maximum observed
91 * error was .846 ulps (units in the last place).
92 *
93 * Constants:
94 * The hexadecimal values are the intended ones for the following constants.
95 * The decimal values may be used, provided that the compiler will convert
96 * from decimal to binary accurately enough to produce the hexadecimal values
97 * shown.
98 */
99
100 #include <errno.h>
101 #include "mathimpl.h"
102
103 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
104 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
105 vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
106
107 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
108 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
109 ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)
110
111 #ifdef vccast
112 #define ln2hi vccast(ln2hi)
113 #define ln2lo vccast(ln2lo)
114 #define sqrt2 vccast(sqrt2)
115 #endif
116
117 double log1p(x)
118 double x;
119 {
120 const static double zero=0.0, negone= -1.0, one=1.0,
121 half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
122 double z,s,t,c;
123 int k;
124
125 #if !defined(__vax__)&&!defined(tahoe)
126 if(x!=x) return(x); /* x is NaN */
127 #endif /* !defined(__vax__)&&!defined(tahoe) */
128
129 if(finite(x)) {
130 if( x > negone ) {
131
132 /* argument reduction */
133 if(copysign(x,one)<small) return(x);
134 k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
135 if(z+t >= sqrt2 )
136 { k += 1 ; z *= half; t *= half; }
137 t += negone; x = z + t;
138 c = (t-x)+z ; /* correction term for x */
139
140 /* compute log(1+x) */
141 s = x/(2+x); t = x*x*half;
142 c += (k*ln2lo-c*x);
143 z = c+s*(t+__log__L(s*s));
144 x += (z - t) ;
145
146 return(k*ln2hi+x);
147 }
148 /* end of if (x > negone) */
149
150 else {
151 #if defined(__vax__)||defined(tahoe)
152 if ( x == negone )
153 return (infnan(-ERANGE)); /* -INF */
154 else
155 return (infnan(EDOM)); /* NaN */
156 #else /* defined(__vax__)||defined(tahoe) */
157 /* x = -1, return -INF with signal */
158 if ( x == negone ) return( negone/zero );
159
160 /* negative argument for log, return NaN with signal */
161 else return ( zero / zero );
162 #endif /* defined(__vax__)||defined(tahoe) */
163 }
164 }
165 /* end of if (finite(x)) */
166
167 /* log(-INF) is NaN */
168 else if(x<0)
169 return(zero/zero);
170
171 /* log(+INF) is INF */
172 else return(x);
173 }
174