Home | History | Annotate | Line # | Download | only in noieee_src
n_pow.c revision 1.11
      1 /*      $NetBSD: n_pow.c,v 1.11 2014/10/11 07:19:27 martin Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #ifndef lint
     32 #if 0
     33 static char sccsid[] = "@(#)pow.c	8.1 (Berkeley) 6/4/93";
     34 #endif
     35 #endif /* not lint */
     36 
     37 /* POW(X,Y)
     38  * RETURN X**Y
     39  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     40  * CODED IN C BY K.C. NG, 1/8/85;
     41  * REVISED BY K.C. NG on 7/10/85.
     42  * KERNEL pow_P() REPLACED BY P. McILROY 7/22/92.
     43  * Required system supported functions:
     44  *      scalb(x,n)
     45  *      logb(x)
     46  *	copysign(x,y)
     47  *	finite(x)
     48  *	drem(x,y)
     49  *
     50  * Required kernel functions:
     51  *	exp__D(a,c)			exp(a + c) for |a| << |c|
     52  *	struct d_double dlog(x)		r.a + r.b, |r.b| < |r.a|
     53  *
     54  * Method
     55  *	1. Compute and return log(x) in three pieces:
     56  *		log(x) = n*ln2 + hi + lo,
     57  *	   where n is an integer.
     58  *	2. Perform y*log(x) by simulating muti-precision arithmetic and
     59  *	   return the answer in three pieces:
     60  *		y*log(x) = m*ln2 + hi + lo,
     61  *	   where m is an integer.
     62  *	3. Return x**y = exp(y*log(x))
     63  *		= 2^m * ( exp(hi+lo) ).
     64  *
     65  * Special cases:
     66  *	(anything) ** 0  is 1 ;
     67  *	(anything) ** 1  is itself;
     68  *	(anything) ** NaN is NaN;
     69  *	NaN ** (anything except 0) is NaN;
     70  *	+(anything > 1) ** +INF is +INF;
     71  *	-(anything > 1) ** +INF is NaN;
     72  *	+-(anything > 1) ** -INF is +0;
     73  *	+-(anything < 1) ** +INF is +0;
     74  *	+(anything < 1) ** -INF is +INF;
     75  *	-(anything < 1) ** -INF is NaN;
     76  *	+-1 ** +-INF is NaN and signal INVALID;
     77  *	+0 ** +(anything except 0, NaN)  is +0;
     78  *	-0 ** +(anything except 0, NaN, odd integer)  is +0;
     79  *	+0 ** -(anything except 0, NaN)  is +INF and signal DIV-BY-ZERO;
     80  *	-0 ** -(anything except 0, NaN, odd integer)  is +INF with signal;
     81  *	-0 ** (odd integer) = -( +0 ** (odd integer) );
     82  *	+INF ** +(anything except 0,NaN) is +INF;
     83  *	+INF ** -(anything except 0,NaN) is +0;
     84  *	-INF ** (odd integer) = -( +INF ** (odd integer) );
     85  *	-INF ** (even integer) = ( +INF ** (even integer) );
     86  *	-INF ** -(anything except integer,NaN) is NaN with signal;
     87  *	-(x=anything) ** (k=integer) is (-1)**k * (x ** k);
     88  *	-(anything except 0) ** (non-integer) is NaN with signal;
     89  *
     90  * Accuracy:
     91  *	pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
     92  *	and a Zilog Z8000,
     93  *			pow(integer,integer)
     94  *	always returns the correct integer provided it is representable.
     95  *	In a test run with 100,000 random arguments with 0 < x, y < 20.0
     96  *	on a VAX, the maximum observed error was 1.79 ulps (units in the
     97  *	last place).
     98  *
     99  * Constants :
    100  * The hexadecimal values are the intended ones for the following constants.
    101  * The decimal values may be used, provided that the compiler will convert
    102  * from decimal to binary accurately enough to produce the hexadecimal values
    103  * shown.
    104  */
    105 
    106 #include <errno.h>
    107 #include <math.h>
    108 
    109 #include "mathimpl.h"
    110 
    111 #if (defined(__vax__) || defined(tahoe))
    112 #define TRUNC(x)	x = (double) (float) x
    113 #define _IEEE		0
    114 #else
    115 #define _IEEE		1
    116 #define endian		(((*(int *) &one)) ? 1 : 0)
    117 #define TRUNC(x) 	*(((int *) &x)+endian) &= 0xf8000000
    118 #define infnan(x)	0.0
    119 #endif		/* __vax__ or tahoe */
    120 
    121 static const double zero=0.0, one=1.0, two=2.0, negone= -1.0;
    122 
    123 static double pow_P (double, double);
    124 
    125 #ifdef __weak_alias
    126 __weak_alias(_powf, powf);
    127 __weak_alias(_pow, pow);
    128 __weak_alias(_powl, pow);
    129 __weak_alias(powl, pow);
    130 #endif
    131 
    132 float
    133 powf(float x, float y)
    134 {
    135    return pow((double) x, (double) (y));
    136 }
    137 
    138 double
    139 pow(double x, double y)
    140 {
    141 	double t;
    142 	if (y==zero)
    143 		return (one);
    144 	else if (y==one || (_IEEE && x != x))
    145 		return (x);		/* if x is NaN or y=1 */
    146 	else if (_IEEE && y!=y)		/* if y is NaN */
    147 		return (y);
    148 	else if (!finite(y))		/* if y is INF */
    149 		if ((t=fabs(x))==one)	/* +-1 ** +-INF is NaN */
    150 			return (y - y);
    151 		else if (t>one)
    152 			return ((y<0)? zero : ((x<zero)? y-y : y));
    153 		else
    154 			return ((y>0)? zero : ((x<0)? y-y : -y));
    155 	else if (y==two)
    156 		return (x*x);
    157 	else if (y==negone)
    158 		return (one/x);
    159     /* x > 0, x == +0 */
    160 	else if (copysign(one, x) == one)
    161 		return (pow_P(x, y));
    162 
    163     /* sign(x)= -1 */
    164 	/* if y is an even integer */
    165 	else if ( (t=drem(y,two)) == zero)
    166 		return (pow_P(-x, y));
    167 
    168 	/* if y is an odd integer */
    169 	else if (copysign(t,one) == one)
    170 		return (-pow_P(-x, y));
    171 
    172 	/* Henceforth y is not an integer */
    173 	else if (x==zero)	/* x is -0 */
    174 		return ((y>zero)? -x : one/(-x));
    175 	else if (_IEEE)
    176 		return (zero/zero);
    177 	else
    178 		return (infnan(EDOM));
    179 }
    180 
    181 /* kernel function for x >= 0 */
    182 static double
    183 pow_P(double x, double y)
    184 {
    185 	struct Double s, t;
    186 	double  huge = _HUGE, tiny = _TINY;
    187 
    188 	if (x == zero) {
    189 		if (y > zero)
    190 			return (zero);
    191 		else if (_IEEE)
    192 			return (huge*huge);
    193 		else
    194 			return (infnan(ERANGE));
    195 	}
    196 	if (x == one)
    197 		return (one);
    198 	if (!finite(x)) {
    199 		if (y < zero)
    200 			return (zero);
    201 		else if (_IEEE)
    202 			return (huge*huge);
    203 		else
    204 			return (infnan(ERANGE));
    205 	}
    206 	if (y >= 7e18) {	/* infinity */
    207 		if (x < 1)
    208 			return(tiny*tiny);
    209 		else if (_IEEE)
    210 			return (huge*huge);
    211 		else
    212 			return (infnan(ERANGE));
    213 	}
    214 
    215 	/* Return exp(y*log(x)), using simulated extended */
    216 	/* precision for the log and the multiply.	  */
    217 
    218 	s = __log__D(x);
    219 	t.a = y;
    220 	TRUNC(t.a);
    221 	t.b = y - t.a;
    222 	t.b = s.b*y + t.b*s.a;
    223 	t.a *= s.a;
    224 	s.a = t.a + t.b;
    225 	s.b = (t.a - s.a) + t.b;
    226 	return (__exp__D(s.a, s.b));
    227 }
    228