Home | History | Annotate | Line # | Download | only in noieee_src
n_pow.c revision 1.5.2.1
      1 /*      $NetBSD: n_pow.c,v 1.5.2.1 2002/06/18 13:40:57 lukem Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)pow.c	8.1 (Berkeley) 6/4/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 /* POW(X,Y)
     42  * RETURN X**Y
     43  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     44  * CODED IN C BY K.C. NG, 1/8/85;
     45  * REVISED BY K.C. NG on 7/10/85.
     46  * KERNEL pow_P() REPLACED BY P. McILROY 7/22/92.
     47  * Required system supported functions:
     48  *      scalb(x,n)
     49  *      logb(x)
     50  *	copysign(x,y)
     51  *	finite(x)
     52  *	drem(x,y)
     53  *
     54  * Required kernel functions:
     55  *	exp__D(a,c)			exp(a + c) for |a| << |c|
     56  *	struct d_double dlog(x)		r.a + r.b, |r.b| < |r.a|
     57  *
     58  * Method
     59  *	1. Compute and return log(x) in three pieces:
     60  *		log(x) = n*ln2 + hi + lo,
     61  *	   where n is an integer.
     62  *	2. Perform y*log(x) by simulating muti-precision arithmetic and
     63  *	   return the answer in three pieces:
     64  *		y*log(x) = m*ln2 + hi + lo,
     65  *	   where m is an integer.
     66  *	3. Return x**y = exp(y*log(x))
     67  *		= 2^m * ( exp(hi+lo) ).
     68  *
     69  * Special cases:
     70  *	(anything) ** 0  is 1 ;
     71  *	(anything) ** 1  is itself;
     72  *	(anything) ** NaN is NaN;
     73  *	NaN ** (anything except 0) is NaN;
     74  *	+(anything > 1) ** +INF is +INF;
     75  *	-(anything > 1) ** +INF is NaN;
     76  *	+-(anything > 1) ** -INF is +0;
     77  *	+-(anything < 1) ** +INF is +0;
     78  *	+(anything < 1) ** -INF is +INF;
     79  *	-(anything < 1) ** -INF is NaN;
     80  *	+-1 ** +-INF is NaN and signal INVALID;
     81  *	+0 ** +(anything except 0, NaN)  is +0;
     82  *	-0 ** +(anything except 0, NaN, odd integer)  is +0;
     83  *	+0 ** -(anything except 0, NaN)  is +INF and signal DIV-BY-ZERO;
     84  *	-0 ** -(anything except 0, NaN, odd integer)  is +INF with signal;
     85  *	-0 ** (odd integer) = -( +0 ** (odd integer) );
     86  *	+INF ** +(anything except 0,NaN) is +INF;
     87  *	+INF ** -(anything except 0,NaN) is +0;
     88  *	-INF ** (odd integer) = -( +INF ** (odd integer) );
     89  *	-INF ** (even integer) = ( +INF ** (even integer) );
     90  *	-INF ** -(anything except integer,NaN) is NaN with signal;
     91  *	-(x=anything) ** (k=integer) is (-1)**k * (x ** k);
     92  *	-(anything except 0) ** (non-integer) is NaN with signal;
     93  *
     94  * Accuracy:
     95  *	pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
     96  *	and a Zilog Z8000,
     97  *			pow(integer,integer)
     98  *	always returns the correct integer provided it is representable.
     99  *	In a test run with 100,000 random arguments with 0 < x, y < 20.0
    100  *	on a VAX, the maximum observed error was 1.79 ulps (units in the
    101  *	last place).
    102  *
    103  * Constants :
    104  * The hexadecimal values are the intended ones for the following constants.
    105  * The decimal values may be used, provided that the compiler will convert
    106  * from decimal to binary accurately enough to produce the hexadecimal values
    107  * shown.
    108  */
    109 
    110 #include <errno.h>
    111 #include <math.h>
    112 
    113 #include "mathimpl.h"
    114 
    115 #if (defined(__vax__) || defined(tahoe))
    116 #define TRUNC(x)	x = (double) (float) x
    117 #define _IEEE		0
    118 #else
    119 #define _IEEE		1
    120 #define endian		(((*(int *) &one)) ? 1 : 0)
    121 #define TRUNC(x) 	*(((int *) &x)+endian) &= 0xf8000000
    122 #define infnan(x)	0.0
    123 #endif		/* __vax__ or tahoe */
    124 
    125 static const double zero=0.0, one=1.0, two=2.0, negone= -1.0;
    126 
    127 static double pow_P (double, double);
    128 
    129 float
    130 powf(float x, float y)
    131 {
    132    return pow((double) x, (double) (y));
    133 }
    134 
    135 double
    136 pow(double x, double y)
    137 {
    138 	double t;
    139 	if (y==zero)
    140 		return (one);
    141 	else if (y==one || (_IEEE && x != x))
    142 		return (x);		/* if x is NaN or y=1 */
    143 	else if (_IEEE && y!=y)		/* if y is NaN */
    144 		return (y);
    145 	else if (!finite(y))		/* if y is INF */
    146 		if ((t=fabs(x))==one)	/* +-1 ** +-INF is NaN */
    147 			return (y - y);
    148 		else if (t>one)
    149 			return ((y<0)? zero : ((x<zero)? y-y : y));
    150 		else
    151 			return ((y>0)? zero : ((x<0)? y-y : -y));
    152 	else if (y==two)
    153 		return (x*x);
    154 	else if (y==negone)
    155 		return (one/x);
    156     /* x > 0, x == +0 */
    157 	else if (copysign(one, x) == one)
    158 		return (pow_P(x, y));
    159 
    160     /* sign(x)= -1 */
    161 	/* if y is an even integer */
    162 	else if ( (t=drem(y,two)) == zero)
    163 		return (pow_P(-x, y));
    164 
    165 	/* if y is an odd integer */
    166 	else if (copysign(t,one) == one)
    167 		return (-pow_P(-x, y));
    168 
    169 	/* Henceforth y is not an integer */
    170 	else if (x==zero)	/* x is -0 */
    171 		return ((y>zero)? -x : one/(-x));
    172 	else if (_IEEE)
    173 		return (zero/zero);
    174 	else
    175 		return (infnan(EDOM));
    176 }
    177 
    178 /* kernel function for x >= 0 */
    179 static double
    180 pow_P(double x, double y)
    181 {
    182 	struct Double s, t;
    183 	double  huge = 1e300, tiny = 1e-300;
    184 
    185 	if (x == zero) {
    186 		if (y > zero)
    187 			return (zero);
    188 		else if (_IEEE)
    189 			return (huge*huge);
    190 		else
    191 			return (infnan(ERANGE));
    192 	}
    193 	if (x == one)
    194 		return (one);
    195 	if (!finite(x)) {
    196 		if (y < zero)
    197 			return (zero);
    198 		else if (_IEEE)
    199 			return (huge*huge);
    200 		else
    201 			return (infnan(ERANGE));
    202 	}
    203 	if (y >= 7e18) {	/* infinity */
    204 		if (x < 1)
    205 			return(tiny*tiny);
    206 		else if (_IEEE)
    207 			return (huge*huge);
    208 		else
    209 			return (infnan(ERANGE));
    210 	}
    211 
    212 	/* Return exp(y*log(x)), using simulated extended */
    213 	/* precision for the log and the multiply.	  */
    214 
    215 	s = __log__D(x);
    216 	t.a = y;
    217 	TRUNC(t.a);
    218 	t.b = y - t.a;
    219 	t.b = s.b*y + t.b*s.a;
    220 	t.a *= s.a;
    221 	s.a = t.a + t.b;
    222 	s.b = (t.a - s.a) + t.b;
    223 	return (__exp__D(s.a, s.b));
    224 }
    225