1 1.8 martin /* $NetBSD: n_sinh.c,v 1.8 2014/10/10 20:58:09 martin Exp $ */ 2 1.1 ragge /* 3 1.1 ragge * Copyright (c) 1985, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.6 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge */ 30 1.1 ragge 31 1.1 ragge #ifndef lint 32 1.2 ragge #if 0 33 1.1 ragge static char sccsid[] = "@(#)sinh.c 8.1 (Berkeley) 6/4/93"; 34 1.2 ragge #endif 35 1.1 ragge #endif /* not lint */ 36 1.1 ragge 37 1.1 ragge /* SINH(X) 38 1.1 ragge * RETURN THE HYPERBOLIC SINE OF X 39 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 40 1.4 simonb * CODED IN C BY K.C. NG, 1/8/85; 41 1.1 ragge * REVISED BY K.C. NG on 2/8/85, 3/7/85, 3/24/85, 4/16/85. 42 1.1 ragge * 43 1.1 ragge * Required system supported functions : 44 1.1 ragge * copysign(x,y) 45 1.1 ragge * scalb(x,N) 46 1.1 ragge * 47 1.1 ragge * Required kernel functions: 48 1.1 ragge * expm1(x) ...return exp(x)-1 49 1.1 ragge * 50 1.1 ragge * Method : 51 1.1 ragge * 1. reduce x to non-negative by sinh(-x) = - sinh(x). 52 1.4 simonb * 2. 53 1.1 ragge * 54 1.1 ragge * expm1(x) + expm1(x)/(expm1(x)+1) 55 1.1 ragge * 0 <= x <= lnovfl : sinh(x) := -------------------------------- 56 1.1 ragge * 2 57 1.1 ragge * lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow) 58 1.1 ragge * lnovfl+ln2 < x < INF : overflow to INF 59 1.4 simonb * 60 1.1 ragge * 61 1.1 ragge * Special cases: 62 1.1 ragge * sinh(x) is x if x is +INF, -INF, or NaN. 63 1.1 ragge * only sinh(0)=0 is exact for finite argument. 64 1.1 ragge * 65 1.1 ragge * Accuracy: 66 1.1 ragge * sinh(x) returns the exact hyperbolic sine of x nearly rounded. In 67 1.1 ragge * a test run with 1,024,000 random arguments on a VAX, the maximum 68 1.1 ragge * observed error was 1.93 ulps (units in the last place). 69 1.1 ragge * 70 1.1 ragge * Constants: 71 1.1 ragge * The hexadecimal values are the intended ones for the following constants. 72 1.1 ragge * The decimal values may be used, provided that the compiler will convert 73 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values 74 1.1 ragge * shown. 75 1.1 ragge */ 76 1.1 ragge 77 1.5 matt #define _LIBM_STATIC 78 1.7 mhitch #include "../src/namespace.h" 79 1.1 ragge #include "mathimpl.h" 80 1.1 ragge 81 1.7 mhitch #ifdef __weak_alias 82 1.7 mhitch __weak_alias(sinh, _sinh); 83 1.8 martin __weak_alias(_sinhl, _sinh); 84 1.7 mhitch __weak_alias(sinhf, _sinhf); 85 1.7 mhitch #endif 86 1.7 mhitch 87 1.1 ragge vc(mln2hi, 8.8029691931113054792E1 ,0f33,43b0,2bdb,c7e2, 7, .B00F33C7E22BDB) 88 1.1 ragge vc(mln2lo,-4.9650192275318476525E-16 ,1b60,a70f,582a,279e, -50,-.8F1B60279E582A) 89 1.1 ragge vc(lnovfl, 8.8029691931113053016E1 ,0f33,43b0,2bda,c7e2, 7, .B00F33C7E22BDA) 90 1.1 ragge 91 1.1 ragge ic(mln2hi, 7.0978271289338397310E2, 10, 1.62E42FEFA39EF) 92 1.1 ragge ic(mln2lo, 2.3747039373786107478E-14, -45, 1.ABC9E3B39803F) 93 1.1 ragge ic(lnovfl, 7.0978271289338397310E2, 9, 1.62E42FEFA39EF) 94 1.1 ragge 95 1.1 ragge #ifdef vccast 96 1.1 ragge #define mln2hi vccast(mln2hi) 97 1.1 ragge #define mln2lo vccast(mln2lo) 98 1.1 ragge #define lnovfl vccast(lnovfl) 99 1.1 ragge #endif 100 1.1 ragge 101 1.3 matt #if defined(__vax__)||defined(tahoe) 102 1.5 matt static const int max = 126 ; 103 1.3 matt #else /* defined(__vax__)||defined(tahoe) */ 104 1.5 matt static const int max = 1023 ; 105 1.3 matt #endif /* defined(__vax__)||defined(tahoe) */ 106 1.1 ragge 107 1.1 ragge 108 1.5 matt double 109 1.5 matt sinh(double x) 110 1.1 ragge { 111 1.1 ragge static const double one=1.0, half=1.0/2.0 ; 112 1.1 ragge double t, sign; 113 1.3 matt #if !defined(__vax__)&&!defined(tahoe) 114 1.1 ragge if(x!=x) return(x); /* x is NaN */ 115 1.3 matt #endif /* !defined(__vax__)&&!defined(tahoe) */ 116 1.1 ragge sign=copysign(one,x); 117 1.1 ragge x=copysign(x,one); 118 1.1 ragge if(x<lnovfl) 119 1.1 ragge {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));} 120 1.1 ragge 121 1.1 ragge else if(x <= lnovfl+0.7) 122 1.4 simonb /* subtract x by ln(2^(max+1)) and return 2^max*exp(x) 123 1.1 ragge to avoid unnecessary overflow */ 124 1.1 ragge return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign)); 125 1.1 ragge 126 1.1 ragge else /* sinh(+-INF) = +-INF, sinh(+-big no.) overflow to +-INF */ 127 1.1 ragge return( expm1(x)*sign ); 128 1.1 ragge } 129 1.7 mhitch 130 1.7 mhitch float 131 1.7 mhitch sinhf(float x) 132 1.7 mhitch { 133 1.7 mhitch return(sinh((double)x)); 134 1.7 mhitch } 135