Home | History | Annotate | Line # | Download | only in noieee_src
      1  1.6     agc /*	$NetBSD: trig.h,v 1.6 2003/08/07 16:44:53 agc Exp $	*/
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1987, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.6     agc  * 3. Neither the name of the University nor the names of its contributors
     15  1.1   ragge  *    may be used to endorse or promote products derived from this software
     16  1.1   ragge  *    without specific prior written permission.
     17  1.1   ragge  *
     18  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1   ragge  * SUCH DAMAGE.
     29  1.1   ragge  *
     30  1.1   ragge  *	@(#)trig.h	8.1 (Berkeley) 6/4/93
     31  1.1   ragge  */
     32  1.1   ragge 
     33  1.1   ragge vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
     34  1.1   ragge vc(PIo4,   7.8539816339744830676E-1 ,0fda,4049,68c2,a221,  0, .C90FDAA22168C2)
     35  1.1   ragge vc(PIo2,   1.5707963267948966135E0  ,0fda,40c9,68c2,a221,  1, .C90FDAA22168C2)
     36  1.1   ragge vc(PI3o4,  2.3561944901923449203E0  ,cbe3,4116,0e92,f999,  2, .96CBE3F9990E92)
     37  1.1   ragge vc(PI,     3.1415926535897932270E0  ,0fda,4149,68c2,a221,  2, .C90FDAA22168C2)
     38  1.1   ragge vc(PI2,    6.2831853071795864540E0  ,0fda,41c9,68c2,a221,  3, .C90FDAA22168C2)
     39  1.1   ragge 
     40  1.1   ragge ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
     41  1.1   ragge ic(PIo4,   7.8539816339744827900E-1 , -1, 1.921FB54442D18)
     42  1.1   ragge ic(PIo2,   1.5707963267948965580E0  ,  0, 1.921FB54442D18)
     43  1.1   ragge ic(PI3o4,  2.3561944901923448370E0  ,  1, 1.2D97C7F3321D2)
     44  1.1   ragge ic(PI,     3.1415926535897931160E0  ,  1, 1.921FB54442D18)
     45  1.1   ragge ic(PI2,    6.2831853071795862320E0  ,  2, 1.921FB54442D18)
     46  1.1   ragge 
     47  1.1   ragge #ifdef vccast
     48  1.1   ragge #define	thresh	vccast(thresh)
     49  1.1   ragge #define	PIo4	vccast(PIo4)
     50  1.1   ragge #define	PIo2	vccast(PIo2)
     51  1.1   ragge #define	PI3o4	vccast(PI3o4)
     52  1.1   ragge #define	PI	vccast(PI)
     53  1.1   ragge #define	PI2	vccast(PI2)
     54  1.1   ragge #endif
     55  1.1   ragge 
     56  1.1   ragge #ifdef national
     57  1.1   ragge static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
     58  1.1   ragge #define   fmax    (*(double*)fmaxx)
     59  1.1   ragge #endif	/* national */
     60  1.1   ragge 
     61  1.5    matt #ifdef _LIBM_DECLARE
     62  1.5    matt const double
     63  1.5    matt 	__zero = 0,
     64  1.5    matt 	__one = 1,
     65  1.5    matt 	__negone = -1,
     66  1.5    matt 	__half = 1.0/2.0,
     67  1.5    matt #ifdef __vax__
     68  1.5    matt 	__small = 1E-9, /* 1+small**2 == 1; better values for small:
     69  1.5    matt 			  *		small	= 1.5E-9 for VAX D
     70  1.5    matt 			  *			= 1.2E-8 for IEEE Double
     71  1.5    matt 			  *			= 2.8E-10 for IEEE Extended
     72  1.5    matt 			  */
     73  1.5    matt 	__big = 1E18;	/* big := 1/(small**2) */
     74  1.5    matt #else
     75  1.5    matt 	__small = 1E-10, /* 1+small**2 == 1; better values for small:
     76  1.5    matt 			  *		small	= 1.5E-9 for VAX D
     77  1.5    matt 			  *			= 1.2E-8 for IEEE Double
     78  1.5    matt 			  *			= 2.8E-10 for IEEE Extended
     79  1.5    matt 			  */
     80  1.5    matt 	__big = 1E20;	/* big := 1/(small**2) */
     81  1.5    matt #endif
     82  1.5    matt #else
     83  1.5    matt extern const double __zero, __one, __negone, __half, __small, __big;
     84  1.5    matt #endif
     85  1.1   ragge 
     86  1.1   ragge /* sin__S(x*x) ... re-implemented as a macro
     87  1.1   ragge  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     88  1.4  simonb  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
     89  1.4  simonb  * CODED IN C BY K.C. NG, 1/21/85;
     90  1.1   ragge  * REVISED BY K.C. NG on 8/13/85.
     91  1.1   ragge  *
     92  1.1   ragge  *	    sin(x*k) - x
     93  1.1   ragge  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
     94  1.4  simonb  *	            x
     95  1.1   ragge  * value of pi in machine precision:
     96  1.1   ragge  *
     97  1.1   ragge  *	Decimal:
     98  1.4  simonb  *		pi = 3.141592653589793 23846264338327 .....
     99  1.1   ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    100  1.4  simonb  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    101  1.1   ragge  *
    102  1.1   ragge  *	Hexadecimal:
    103  1.1   ragge  *		pi = 3.243F6A8885A308D313198A2E....
    104  1.1   ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    105  1.4  simonb  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    106  1.1   ragge  *
    107  1.1   ragge  * Method:
    108  1.4  simonb  *	1. Let z=x*x. Create a polynomial approximation to
    109  1.1   ragge  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
    110  1.1   ragge  *	Then
    111  1.1   ragge  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
    112  1.1   ragge  *
    113  1.1   ragge  *	The coefficient S's are obtained by a special Remez algorithm.
    114  1.1   ragge  *
    115  1.1   ragge  * Accuracy:
    116  1.4  simonb  *	In the absence of rounding error, the approximation has absolute error
    117  1.4  simonb  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
    118  1.1   ragge  *
    119  1.1   ragge  * Constants:
    120  1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
    121  1.1   ragge  * The decimal values may be used, provided that the compiler will convert
    122  1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    123  1.1   ragge  * shown.
    124  1.1   ragge  *
    125  1.1   ragge  */
    126  1.1   ragge 
    127  1.1   ragge vc(S0, -1.6666666666666646660E-1  ,aaaa,bf2a,aa71,aaaa,  -2, -.AAAAAAAAAAAA71)
    128  1.1   ragge vc(S1,  8.3333333333297230413E-3  ,8888,3d08,477f,8888,  -6,  .8888888888477F)
    129  1.1   ragge vc(S2, -1.9841269838362403710E-4  ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
    130  1.1   ragge vc(S3,  2.7557318019967078930E-6  ,ef1c,3738,bedc,a326, -18,  .B8EF1CA326BEDC)
    131  1.1   ragge vc(S4, -2.5051841873876551398E-8  ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
    132  1.1   ragge vc(S5,  1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32,  .B03D9C6D26CCCC)
    133  1.1   ragge vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
    134  1.1   ragge 
    135  1.1   ragge ic(S0, -1.6666666666666463126E-1  ,  -3, -1.555555555550C)
    136  1.1   ragge ic(S1,  8.3333333332992771264E-3  ,  -7,  1.111111110C461)
    137  1.1   ragge ic(S2, -1.9841269816180999116E-4  , -13, -1.A01A019746345)
    138  1.1   ragge ic(S3,  2.7557309793219876880E-6  , -19,  1.71DE3209CDCD9)
    139  1.1   ragge ic(S4, -2.5050225177523807003E-8  , -26, -1.AE5C0E319A4EF)
    140  1.1   ragge ic(S5,  1.5868926979889205164E-10 , -33,  1.5CF61DF672B13)
    141  1.1   ragge 
    142  1.1   ragge #ifdef vccast
    143  1.1   ragge #define	S0	vccast(S0)
    144  1.1   ragge #define	S1	vccast(S1)
    145  1.1   ragge #define	S2	vccast(S2)
    146  1.1   ragge #define	S3	vccast(S3)
    147  1.1   ragge #define	S4	vccast(S4)
    148  1.1   ragge #define	S5	vccast(S5)
    149  1.1   ragge #define	S6	vccast(S6)
    150  1.1   ragge #endif
    151  1.1   ragge 
    152  1.2    matt #if defined(__vax__)||defined(tahoe)
    153  1.1   ragge #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
    154  1.2    matt #else 	/* defined(__vax__)||defined(tahoe) */
    155  1.1   ragge #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
    156  1.2    matt #endif 	/* defined(__vax__)||defined(tahoe) */
    157  1.1   ragge 
    158  1.1   ragge /* cos__C(x*x) ... re-implemented as a macro
    159  1.1   ragge  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
    160  1.4  simonb  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
    161  1.4  simonb  * CODED IN C BY K.C. NG, 1/21/85;
    162  1.1   ragge  * REVISED BY K.C. NG on 8/13/85.
    163  1.1   ragge  *
    164  1.4  simonb  *	   		    x*x
    165  1.1   ragge  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
    166  1.4  simonb  *	  		     2
    167  1.1   ragge  * PI is the rounded value of pi in machine precision :
    168  1.1   ragge  *
    169  1.1   ragge  *	Decimal:
    170  1.4  simonb  *		pi = 3.141592653589793 23846264338327 .....
    171  1.1   ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    172  1.4  simonb  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    173  1.1   ragge  *
    174  1.1   ragge  *	Hexadecimal:
    175  1.1   ragge  *		pi = 3.243F6A8885A308D313198A2E....
    176  1.1   ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    177  1.4  simonb  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    178  1.1   ragge  *
    179  1.1   ragge  *
    180  1.1   ragge  * Method:
    181  1.4  simonb  *	1. Let z=x*x. Create a polynomial approximation to
    182  1.1   ragge  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    183  1.1   ragge  *	then
    184  1.1   ragge  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    185  1.1   ragge  *
    186  1.1   ragge  *	The coefficient C's are obtained by a special Remez algorithm.
    187  1.1   ragge  *
    188  1.1   ragge  * Accuracy:
    189  1.4  simonb  *	In the absence of rounding error, the approximation has absolute error
    190  1.4  simonb  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
    191  1.4  simonb  *
    192  1.1   ragge  *
    193  1.1   ragge  * Constants:
    194  1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
    195  1.1   ragge  * The decimal values may be used, provided that the compiler will convert
    196  1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    197  1.1   ragge  * shown.
    198  1.1   ragge  */
    199  1.1   ragge 
    200  1.1   ragge vc(C0,  4.1666666666666504759E-2  ,aaaa,3e2a,a9f0,aaaa,  -4,  .AAAAAAAAAAA9F0)
    201  1.1   ragge vc(C1, -1.3888888888865302059E-3  ,0b60,bbb6,0cca,b60a,  -9, -.B60B60B60A0CCA)
    202  1.1   ragge vc(C2,  2.4801587285601038265E-5  ,0d00,38d0,098f,cdcd, -15,  .D00D00CDCD098F)
    203  1.1   ragge vc(C3, -2.7557313470902390219E-7  ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
    204  1.1   ragge vc(C4,  2.0875623401082232009E-9  ,74c8,320f,3ff0,fa1e, -28,  .8F74C8FA1E3FF0)
    205  1.1   ragge vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
    206  1.1   ragge 
    207  1.1   ragge ic(C0,  4.1666666666666504759E-2  ,  -5,  1.555555555553E)
    208  1.1   ragge ic(C1, -1.3888888888865301516E-3  , -10, -1.6C16C16C14199)
    209  1.1   ragge ic(C2,  2.4801587269650015769E-5  , -16,  1.A01A01971CAEB)
    210  1.1   ragge ic(C3, -2.7557304623183959811E-7  , -22, -1.27E4F1314AD1A)
    211  1.1   ragge ic(C4,  2.0873958177697780076E-9  , -29,  1.1EE3B60DDDC8C)
    212  1.1   ragge ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
    213  1.1   ragge 
    214  1.1   ragge #ifdef vccast
    215  1.1   ragge #define	C0	vccast(C0)
    216  1.1   ragge #define	C1	vccast(C1)
    217  1.1   ragge #define	C2	vccast(C2)
    218  1.1   ragge #define	C3	vccast(C3)
    219  1.1   ragge #define	C4	vccast(C4)
    220  1.1   ragge #define	C5	vccast(C5)
    221  1.1   ragge #endif
    222  1.1   ragge 
    223  1.1   ragge #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
    224