1 1.6 agc /* $NetBSD: trig.h,v 1.6 2003/08/07 16:44:53 agc Exp $ */ 2 1.1 ragge /* 3 1.1 ragge * Copyright (c) 1987, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.6 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge * 30 1.1 ragge * @(#)trig.h 8.1 (Berkeley) 6/4/93 31 1.1 ragge */ 32 1.1 ragge 33 1.1 ragge vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0) 34 1.1 ragge vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2) 35 1.1 ragge vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2) 36 1.1 ragge vc(PI3o4, 2.3561944901923449203E0 ,cbe3,4116,0e92,f999, 2, .96CBE3F9990E92) 37 1.1 ragge vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2) 38 1.1 ragge vc(PI2, 6.2831853071795864540E0 ,0fda,41c9,68c2,a221, 3, .C90FDAA22168C2) 39 1.1 ragge 40 1.1 ragge ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4) 41 1.1 ragge ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18) 42 1.1 ragge ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18) 43 1.1 ragge ic(PI3o4, 2.3561944901923448370E0 , 1, 1.2D97C7F3321D2) 44 1.1 ragge ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18) 45 1.1 ragge ic(PI2, 6.2831853071795862320E0 , 2, 1.921FB54442D18) 46 1.1 ragge 47 1.1 ragge #ifdef vccast 48 1.1 ragge #define thresh vccast(thresh) 49 1.1 ragge #define PIo4 vccast(PIo4) 50 1.1 ragge #define PIo2 vccast(PIo2) 51 1.1 ragge #define PI3o4 vccast(PI3o4) 52 1.1 ragge #define PI vccast(PI) 53 1.1 ragge #define PI2 vccast(PI2) 54 1.1 ragge #endif 55 1.1 ragge 56 1.1 ragge #ifdef national 57 1.1 ragge static long fmaxx[] = { 0xffffffff, 0x7fefffff}; 58 1.1 ragge #define fmax (*(double*)fmaxx) 59 1.1 ragge #endif /* national */ 60 1.1 ragge 61 1.5 matt #ifdef _LIBM_DECLARE 62 1.5 matt const double 63 1.5 matt __zero = 0, 64 1.5 matt __one = 1, 65 1.5 matt __negone = -1, 66 1.5 matt __half = 1.0/2.0, 67 1.5 matt #ifdef __vax__ 68 1.5 matt __small = 1E-9, /* 1+small**2 == 1; better values for small: 69 1.5 matt * small = 1.5E-9 for VAX D 70 1.5 matt * = 1.2E-8 for IEEE Double 71 1.5 matt * = 2.8E-10 for IEEE Extended 72 1.5 matt */ 73 1.5 matt __big = 1E18; /* big := 1/(small**2) */ 74 1.5 matt #else 75 1.5 matt __small = 1E-10, /* 1+small**2 == 1; better values for small: 76 1.5 matt * small = 1.5E-9 for VAX D 77 1.5 matt * = 1.2E-8 for IEEE Double 78 1.5 matt * = 2.8E-10 for IEEE Extended 79 1.5 matt */ 80 1.5 matt __big = 1E20; /* big := 1/(small**2) */ 81 1.5 matt #endif 82 1.5 matt #else 83 1.5 matt extern const double __zero, __one, __negone, __half, __small, __big; 84 1.5 matt #endif 85 1.1 ragge 86 1.1 ragge /* sin__S(x*x) ... re-implemented as a macro 87 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 88 1.4 simonb * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 89 1.4 simonb * CODED IN C BY K.C. NG, 1/21/85; 90 1.1 ragge * REVISED BY K.C. NG on 8/13/85. 91 1.1 ragge * 92 1.1 ragge * sin(x*k) - x 93 1.1 ragge * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded 94 1.4 simonb * x 95 1.1 ragge * value of pi in machine precision: 96 1.1 ragge * 97 1.1 ragge * Decimal: 98 1.4 simonb * pi = 3.141592653589793 23846264338327 ..... 99 1.1 ragge * 53 bits PI = 3.141592653589793 115997963 ..... , 100 1.4 simonb * 56 bits PI = 3.141592653589793 227020265 ..... , 101 1.1 ragge * 102 1.1 ragge * Hexadecimal: 103 1.1 ragge * pi = 3.243F6A8885A308D313198A2E.... 104 1.1 ragge * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 105 1.4 simonb * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 106 1.1 ragge * 107 1.1 ragge * Method: 108 1.4 simonb * 1. Let z=x*x. Create a polynomial approximation to 109 1.1 ragge * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). 110 1.1 ragge * Then 111 1.1 ragge * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) 112 1.1 ragge * 113 1.1 ragge * The coefficient S's are obtained by a special Remez algorithm. 114 1.1 ragge * 115 1.1 ragge * Accuracy: 116 1.4 simonb * In the absence of rounding error, the approximation has absolute error 117 1.4 simonb * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 118 1.1 ragge * 119 1.1 ragge * Constants: 120 1.1 ragge * The hexadecimal values are the intended ones for the following constants. 121 1.1 ragge * The decimal values may be used, provided that the compiler will convert 122 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values 123 1.1 ragge * shown. 124 1.1 ragge * 125 1.1 ragge */ 126 1.1 ragge 127 1.1 ragge vc(S0, -1.6666666666666646660E-1 ,aaaa,bf2a,aa71,aaaa, -2, -.AAAAAAAAAAAA71) 128 1.1 ragge vc(S1, 8.3333333333297230413E-3 ,8888,3d08,477f,8888, -6, .8888888888477F) 129 1.1 ragge vc(S2, -1.9841269838362403710E-4 ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057) 130 1.1 ragge vc(S3, 2.7557318019967078930E-6 ,ef1c,3738,bedc,a326, -18, .B8EF1CA326BEDC) 131 1.1 ragge vc(S4, -2.5051841873876551398E-8 ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3) 132 1.1 ragge vc(S5, 1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32, .B03D9C6D26CCCC) 133 1.1 ragge vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82) 134 1.1 ragge 135 1.1 ragge ic(S0, -1.6666666666666463126E-1 , -3, -1.555555555550C) 136 1.1 ragge ic(S1, 8.3333333332992771264E-3 , -7, 1.111111110C461) 137 1.1 ragge ic(S2, -1.9841269816180999116E-4 , -13, -1.A01A019746345) 138 1.1 ragge ic(S3, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9) 139 1.1 ragge ic(S4, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF) 140 1.1 ragge ic(S5, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13) 141 1.1 ragge 142 1.1 ragge #ifdef vccast 143 1.1 ragge #define S0 vccast(S0) 144 1.1 ragge #define S1 vccast(S1) 145 1.1 ragge #define S2 vccast(S2) 146 1.1 ragge #define S3 vccast(S3) 147 1.1 ragge #define S4 vccast(S4) 148 1.1 ragge #define S5 vccast(S5) 149 1.1 ragge #define S6 vccast(S6) 150 1.1 ragge #endif 151 1.1 ragge 152 1.2 matt #if defined(__vax__)||defined(tahoe) 153 1.1 ragge # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))) 154 1.2 matt #else /* defined(__vax__)||defined(tahoe) */ 155 1.1 ragge # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))) 156 1.2 matt #endif /* defined(__vax__)||defined(tahoe) */ 157 1.1 ragge 158 1.1 ragge /* cos__C(x*x) ... re-implemented as a macro 159 1.1 ragge * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) 160 1.4 simonb * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 161 1.4 simonb * CODED IN C BY K.C. NG, 1/21/85; 162 1.1 ragge * REVISED BY K.C. NG on 8/13/85. 163 1.1 ragge * 164 1.4 simonb * x*x 165 1.1 ragge * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, 166 1.4 simonb * 2 167 1.1 ragge * PI is the rounded value of pi in machine precision : 168 1.1 ragge * 169 1.1 ragge * Decimal: 170 1.4 simonb * pi = 3.141592653589793 23846264338327 ..... 171 1.1 ragge * 53 bits PI = 3.141592653589793 115997963 ..... , 172 1.4 simonb * 56 bits PI = 3.141592653589793 227020265 ..... , 173 1.1 ragge * 174 1.1 ragge * Hexadecimal: 175 1.1 ragge * pi = 3.243F6A8885A308D313198A2E.... 176 1.1 ragge * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 177 1.4 simonb * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 178 1.1 ragge * 179 1.1 ragge * 180 1.1 ragge * Method: 181 1.4 simonb * 1. Let z=x*x. Create a polynomial approximation to 182 1.1 ragge * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) 183 1.1 ragge * then 184 1.1 ragge * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) 185 1.1 ragge * 186 1.1 ragge * The coefficient C's are obtained by a special Remez algorithm. 187 1.1 ragge * 188 1.1 ragge * Accuracy: 189 1.4 simonb * In the absence of rounding error, the approximation has absolute error 190 1.4 simonb * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 191 1.4 simonb * 192 1.1 ragge * 193 1.1 ragge * Constants: 194 1.1 ragge * The hexadecimal values are the intended ones for the following constants. 195 1.1 ragge * The decimal values may be used, provided that the compiler will convert 196 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values 197 1.1 ragge * shown. 198 1.1 ragge */ 199 1.1 ragge 200 1.1 ragge vc(C0, 4.1666666666666504759E-2 ,aaaa,3e2a,a9f0,aaaa, -4, .AAAAAAAAAAA9F0) 201 1.1 ragge vc(C1, -1.3888888888865302059E-3 ,0b60,bbb6,0cca,b60a, -9, -.B60B60B60A0CCA) 202 1.1 ragge vc(C2, 2.4801587285601038265E-5 ,0d00,38d0,098f,cdcd, -15, .D00D00CDCD098F) 203 1.1 ragge vc(C3, -2.7557313470902390219E-7 ,f27b,b593,e805,b593, -21, -.93F27BB593E805) 204 1.1 ragge vc(C4, 2.0875623401082232009E-9 ,74c8,320f,3ff0,fa1e, -28, .8F74C8FA1E3FF0) 205 1.1 ragge vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63) 206 1.1 ragge 207 1.1 ragge ic(C0, 4.1666666666666504759E-2 , -5, 1.555555555553E) 208 1.1 ragge ic(C1, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199) 209 1.1 ragge ic(C2, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB) 210 1.1 ragge ic(C3, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A) 211 1.1 ragge ic(C4, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C) 212 1.1 ragge ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E) 213 1.1 ragge 214 1.1 ragge #ifdef vccast 215 1.1 ragge #define C0 vccast(C0) 216 1.1 ragge #define C1 vccast(C1) 217 1.1 ragge #define C2 vccast(C2) 218 1.1 ragge #define C3 vccast(C3) 219 1.1 ragge #define C4 vccast(C4) 220 1.1 ragge #define C5 vccast(C5) 221 1.1 ragge #endif 222 1.1 ragge 223 1.1 ragge #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))) 224