Home | History | Annotate | Line # | Download | only in noieee_src
trig.h revision 1.1
      1  1.1  ragge /*
      2  1.1  ragge  * Copyright (c) 1987, 1993
      3  1.1  ragge  *	The Regents of the University of California.  All rights reserved.
      4  1.1  ragge  *
      5  1.1  ragge  * Redistribution and use in source and binary forms, with or without
      6  1.1  ragge  * modification, are permitted provided that the following conditions
      7  1.1  ragge  * are met:
      8  1.1  ragge  * 1. Redistributions of source code must retain the above copyright
      9  1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     10  1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     11  1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     12  1.1  ragge  *    documentation and/or other materials provided with the distribution.
     13  1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     14  1.1  ragge  *    must display the following acknowledgement:
     15  1.1  ragge  *	This product includes software developed by the University of
     16  1.1  ragge  *	California, Berkeley and its contributors.
     17  1.1  ragge  * 4. Neither the name of the University nor the names of its contributors
     18  1.1  ragge  *    may be used to endorse or promote products derived from this software
     19  1.1  ragge  *    without specific prior written permission.
     20  1.1  ragge  *
     21  1.1  ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  1.1  ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  1.1  ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  1.1  ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  1.1  ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  1.1  ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  1.1  ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  1.1  ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  1.1  ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  1.1  ragge  * SUCH DAMAGE.
     32  1.1  ragge  *
     33  1.1  ragge  *	@(#)trig.h	8.1 (Berkeley) 6/4/93
     34  1.1  ragge  */
     35  1.1  ragge 
     36  1.1  ragge vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
     37  1.1  ragge vc(PIo4,   7.8539816339744830676E-1 ,0fda,4049,68c2,a221,  0, .C90FDAA22168C2)
     38  1.1  ragge vc(PIo2,   1.5707963267948966135E0  ,0fda,40c9,68c2,a221,  1, .C90FDAA22168C2)
     39  1.1  ragge vc(PI3o4,  2.3561944901923449203E0  ,cbe3,4116,0e92,f999,  2, .96CBE3F9990E92)
     40  1.1  ragge vc(PI,     3.1415926535897932270E0  ,0fda,4149,68c2,a221,  2, .C90FDAA22168C2)
     41  1.1  ragge vc(PI2,    6.2831853071795864540E0  ,0fda,41c9,68c2,a221,  3, .C90FDAA22168C2)
     42  1.1  ragge 
     43  1.1  ragge ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
     44  1.1  ragge ic(PIo4,   7.8539816339744827900E-1 , -1, 1.921FB54442D18)
     45  1.1  ragge ic(PIo2,   1.5707963267948965580E0  ,  0, 1.921FB54442D18)
     46  1.1  ragge ic(PI3o4,  2.3561944901923448370E0  ,  1, 1.2D97C7F3321D2)
     47  1.1  ragge ic(PI,     3.1415926535897931160E0  ,  1, 1.921FB54442D18)
     48  1.1  ragge ic(PI2,    6.2831853071795862320E0  ,  2, 1.921FB54442D18)
     49  1.1  ragge 
     50  1.1  ragge #ifdef vccast
     51  1.1  ragge #define	thresh	vccast(thresh)
     52  1.1  ragge #define	PIo4	vccast(PIo4)
     53  1.1  ragge #define	PIo2	vccast(PIo2)
     54  1.1  ragge #define	PI3o4	vccast(PI3o4)
     55  1.1  ragge #define	PI	vccast(PI)
     56  1.1  ragge #define	PI2	vccast(PI2)
     57  1.1  ragge #endif
     58  1.1  ragge 
     59  1.1  ragge #ifdef national
     60  1.1  ragge static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
     61  1.1  ragge #define   fmax    (*(double*)fmaxx)
     62  1.1  ragge #endif	/* national */
     63  1.1  ragge 
     64  1.1  ragge static const double
     65  1.1  ragge 	zero = 0,
     66  1.1  ragge 	one = 1,
     67  1.1  ragge 	negone = -1,
     68  1.1  ragge 	half = 1.0/2.0,
     69  1.1  ragge 	small = 1E-10,	/* 1+small**2 == 1; better values for small:
     70  1.1  ragge 			 *		small	= 1.5E-9 for VAX D
     71  1.1  ragge 			 *			= 1.2E-8 for IEEE Double
     72  1.1  ragge 			 *			= 2.8E-10 for IEEE Extended
     73  1.1  ragge 			 */
     74  1.1  ragge 	big = 1E20;	/* big := 1/(small**2) */
     75  1.1  ragge 
     76  1.1  ragge /* sin__S(x*x) ... re-implemented as a macro
     77  1.1  ragge  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     78  1.1  ragge  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
     79  1.1  ragge  * CODED IN C BY K.C. NG, 1/21/85;
     80  1.1  ragge  * REVISED BY K.C. NG on 8/13/85.
     81  1.1  ragge  *
     82  1.1  ragge  *	    sin(x*k) - x
     83  1.1  ragge  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
     84  1.1  ragge  *	            x
     85  1.1  ragge  * value of pi in machine precision:
     86  1.1  ragge  *
     87  1.1  ragge  *	Decimal:
     88  1.1  ragge  *		pi = 3.141592653589793 23846264338327 .....
     89  1.1  ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
     90  1.1  ragge  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
     91  1.1  ragge  *
     92  1.1  ragge  *	Hexadecimal:
     93  1.1  ragge  *		pi = 3.243F6A8885A308D313198A2E....
     94  1.1  ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
     95  1.1  ragge  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
     96  1.1  ragge  *
     97  1.1  ragge  * Method:
     98  1.1  ragge  *	1. Let z=x*x. Create a polynomial approximation to
     99  1.1  ragge  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
    100  1.1  ragge  *	Then
    101  1.1  ragge  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
    102  1.1  ragge  *
    103  1.1  ragge  *	The coefficient S's are obtained by a special Remez algorithm.
    104  1.1  ragge  *
    105  1.1  ragge  * Accuracy:
    106  1.1  ragge  *	In the absence of rounding error, the approximation has absolute error
    107  1.1  ragge  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
    108  1.1  ragge  *
    109  1.1  ragge  * Constants:
    110  1.1  ragge  * The hexadecimal values are the intended ones for the following constants.
    111  1.1  ragge  * The decimal values may be used, provided that the compiler will convert
    112  1.1  ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    113  1.1  ragge  * shown.
    114  1.1  ragge  *
    115  1.1  ragge  */
    116  1.1  ragge 
    117  1.1  ragge vc(S0, -1.6666666666666646660E-1  ,aaaa,bf2a,aa71,aaaa,  -2, -.AAAAAAAAAAAA71)
    118  1.1  ragge vc(S1,  8.3333333333297230413E-3  ,8888,3d08,477f,8888,  -6,  .8888888888477F)
    119  1.1  ragge vc(S2, -1.9841269838362403710E-4  ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
    120  1.1  ragge vc(S3,  2.7557318019967078930E-6  ,ef1c,3738,bedc,a326, -18,  .B8EF1CA326BEDC)
    121  1.1  ragge vc(S4, -2.5051841873876551398E-8  ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
    122  1.1  ragge vc(S5,  1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32,  .B03D9C6D26CCCC)
    123  1.1  ragge vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
    124  1.1  ragge 
    125  1.1  ragge ic(S0, -1.6666666666666463126E-1  ,  -3, -1.555555555550C)
    126  1.1  ragge ic(S1,  8.3333333332992771264E-3  ,  -7,  1.111111110C461)
    127  1.1  ragge ic(S2, -1.9841269816180999116E-4  , -13, -1.A01A019746345)
    128  1.1  ragge ic(S3,  2.7557309793219876880E-6  , -19,  1.71DE3209CDCD9)
    129  1.1  ragge ic(S4, -2.5050225177523807003E-8  , -26, -1.AE5C0E319A4EF)
    130  1.1  ragge ic(S5,  1.5868926979889205164E-10 , -33,  1.5CF61DF672B13)
    131  1.1  ragge 
    132  1.1  ragge #ifdef vccast
    133  1.1  ragge #define	S0	vccast(S0)
    134  1.1  ragge #define	S1	vccast(S1)
    135  1.1  ragge #define	S2	vccast(S2)
    136  1.1  ragge #define	S3	vccast(S3)
    137  1.1  ragge #define	S4	vccast(S4)
    138  1.1  ragge #define	S5	vccast(S5)
    139  1.1  ragge #define	S6	vccast(S6)
    140  1.1  ragge #endif
    141  1.1  ragge 
    142  1.1  ragge #if defined(vax)||defined(tahoe)
    143  1.1  ragge #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
    144  1.1  ragge #else 	/* defined(vax)||defined(tahoe) */
    145  1.1  ragge #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
    146  1.1  ragge #endif 	/* defined(vax)||defined(tahoe) */
    147  1.1  ragge 
    148  1.1  ragge /* cos__C(x*x) ... re-implemented as a macro
    149  1.1  ragge  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
    150  1.1  ragge  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
    151  1.1  ragge  * CODED IN C BY K.C. NG, 1/21/85;
    152  1.1  ragge  * REVISED BY K.C. NG on 8/13/85.
    153  1.1  ragge  *
    154  1.1  ragge  *	   		    x*x
    155  1.1  ragge  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
    156  1.1  ragge  *	  		     2
    157  1.1  ragge  * PI is the rounded value of pi in machine precision :
    158  1.1  ragge  *
    159  1.1  ragge  *	Decimal:
    160  1.1  ragge  *		pi = 3.141592653589793 23846264338327 .....
    161  1.1  ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    162  1.1  ragge  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    163  1.1  ragge  *
    164  1.1  ragge  *	Hexadecimal:
    165  1.1  ragge  *		pi = 3.243F6A8885A308D313198A2E....
    166  1.1  ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    167  1.1  ragge  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    168  1.1  ragge  *
    169  1.1  ragge  *
    170  1.1  ragge  * Method:
    171  1.1  ragge  *	1. Let z=x*x. Create a polynomial approximation to
    172  1.1  ragge  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    173  1.1  ragge  *	then
    174  1.1  ragge  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    175  1.1  ragge  *
    176  1.1  ragge  *	The coefficient C's are obtained by a special Remez algorithm.
    177  1.1  ragge  *
    178  1.1  ragge  * Accuracy:
    179  1.1  ragge  *	In the absence of rounding error, the approximation has absolute error
    180  1.1  ragge  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
    181  1.1  ragge  *
    182  1.1  ragge  *
    183  1.1  ragge  * Constants:
    184  1.1  ragge  * The hexadecimal values are the intended ones for the following constants.
    185  1.1  ragge  * The decimal values may be used, provided that the compiler will convert
    186  1.1  ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    187  1.1  ragge  * shown.
    188  1.1  ragge  */
    189  1.1  ragge 
    190  1.1  ragge vc(C0,  4.1666666666666504759E-2  ,aaaa,3e2a,a9f0,aaaa,  -4,  .AAAAAAAAAAA9F0)
    191  1.1  ragge vc(C1, -1.3888888888865302059E-3  ,0b60,bbb6,0cca,b60a,  -9, -.B60B60B60A0CCA)
    192  1.1  ragge vc(C2,  2.4801587285601038265E-5  ,0d00,38d0,098f,cdcd, -15,  .D00D00CDCD098F)
    193  1.1  ragge vc(C3, -2.7557313470902390219E-7  ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
    194  1.1  ragge vc(C4,  2.0875623401082232009E-9  ,74c8,320f,3ff0,fa1e, -28,  .8F74C8FA1E3FF0)
    195  1.1  ragge vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
    196  1.1  ragge 
    197  1.1  ragge ic(C0,  4.1666666666666504759E-2  ,  -5,  1.555555555553E)
    198  1.1  ragge ic(C1, -1.3888888888865301516E-3  , -10, -1.6C16C16C14199)
    199  1.1  ragge ic(C2,  2.4801587269650015769E-5  , -16,  1.A01A01971CAEB)
    200  1.1  ragge ic(C3, -2.7557304623183959811E-7  , -22, -1.27E4F1314AD1A)
    201  1.1  ragge ic(C4,  2.0873958177697780076E-9  , -29,  1.1EE3B60DDDC8C)
    202  1.1  ragge ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
    203  1.1  ragge 
    204  1.1  ragge #ifdef vccast
    205  1.1  ragge #define	C0	vccast(C0)
    206  1.1  ragge #define	C1	vccast(C1)
    207  1.1  ragge #define	C2	vccast(C2)
    208  1.1  ragge #define	C3	vccast(C3)
    209  1.1  ragge #define	C4	vccast(C4)
    210  1.1  ragge #define	C5	vccast(C5)
    211  1.1  ragge #endif
    212  1.1  ragge 
    213  1.1  ragge #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
    214